Skip to main content
Log in

Triphenylantimony(V) Catecholates Based on 3,6-Di-tert-Butyl-2,5-Dihydroxy-1,4-Benzoquinone

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

2,5-Dihydroxy-3,6-di-tert-butyl-p-benzoquinone (QtBuDiol) reacts with Ph3SbBr2 in toluene in the presence of triethylamine to yield the ionic complex [Et3NH]+[(DionetBuDiolate)SbPh3Br] (I). The same reaction in methanol leads to complete displacement of bromide ions from the antimony coordination sphere and gives triphenylantimony(V) 1,2-diolate (DionetBuDiolate)SbPh3 · MeOH (II · MeOH). The molecular structure of the complexes was determined by X-ray diffraction (CIF files CCDC no. 1960681 (I · toluene) and 1960682 (II · 2MeOH)). Both complexes are characterized by quinoid bond distribution in the six-membered carbon rings and by C=O double bonds in the Ph3SbO2C6(t-Bu)2O2 moieties. Formally, the complexes can be considered as 3,6-di-tert-butyl-o-benzoquinone derivatives with the organometallic Ph3SbO2 group in positions 4 and 5 of the quinone ring. The electrochemical reduction of II · MeOH in dichloromethane occurs at E1/2 = –1.52 V, which is significantly shifted to the cathodic region relative to the data for 3,6-di-tert-butyl-o-benzoquinone (E1/2 = –0.51 V). This redox potential shift indicates a significant decrease in the electron-withdrawing properties of the o-quinoid moiety, which is caused by the effect of the electron-donating catecholate metallacycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Loll, B., Kern, J., Saenger, W., et al., Nature, 2005, vol. 438, p. 1040.

    Article  CAS  PubMed  Google Scholar 

  2. Tsukihara, T., Aoyama, H., Yamashita, E., et al., Science, 1995, vol. 269, p. 1069.

    Article  CAS  PubMed  Google Scholar 

  3. Peters, J.W. and Szilagyi, R.K., Curr. Opin. Chem. Biol., 2006, vol. 10, p. 101.

    Article  CAS  PubMed  Google Scholar 

  4. Corpas, F.J., Fernández-Ocña, A., Carreras, A., et al., Plant Cell Physiol., 2006, vol. 47, p. 984.

    Article  CAS  PubMed  Google Scholar 

  5. Schenk, G., Ge, Y., Carrington, L., et al., Arch. Biochem. Biophys., 1999, vol. 370, p. 183.

    Article  CAS  PubMed  Google Scholar 

  6. Adams, R.D. and Cotton, F.A., Catalysis by Di- and Polynuclear Metal Cluster Complexes, Wiley-VCH, 1998, p. 283.

    Google Scholar 

  7. Buchwalter, P., Rosé, J., and Braunstein, P., Chem. Rev., 2015, vol. 115, p. 28.

    Article  CAS  PubMed  Google Scholar 

  8. Mata, J.A., Hahn, F.E., and Peris, E., Chem. Sci., 2014, vol. 5, p. 1723.

    Article  CAS  Google Scholar 

  9. Yalymov, A.I., Bilyachenko, A.N., Levitsky, M.M., et al., Catalysts, 2017, vol. 7, p. 1.

    Article  CAS  Google Scholar 

  10. Kalck, P., Top. Organomet. Chem., 2016, vol. 59, p. 1.

    Article  CAS  Google Scholar 

  11. Molcanov, K., Juric, M., and Kojic-Prodic, B., Dalton Trans., 2013, vol. 42, p. 15756.

    Article  CAS  PubMed  Google Scholar 

  12. Atzori, M., Artizzu, F., Marchio, L., et al., Dalton Trans., 2015, vol. 44, p. 15786.

    Article  CAS  PubMed  Google Scholar 

  13. Simonson, A.N., Kareis, C.M., Ovanesyan, N.S., et al., Polyhedron, 2018, vol. 139, p. 215.

    Article  CAS  Google Scholar 

  14. Kawata, S., Kumagai, H., Adachi, K., and Kitagawa, S., Dalton Trans., 2000, p. 2409.

  15. Bruijnincx, C.A., Viciano-Chumillas, M., Lutz, M., et al., Chem.-Eur. J., 2008, vol. 14, p. 5567.

    Article  CAS  PubMed  Google Scholar 

  16. Benmansour, S., Gomez-Claramunt, P., Valles-Garcia, C., et al., Cryst. Growth Des., 2016, vol. 16, p. 518.

    Article  CAS  Google Scholar 

  17. Kil, Sik Min, Di Pasquale, A.G., Rheingold, A.L., et al., J. Am. Chem. Soc., 2009, vol. 131, p. 6229.

  18. Kil, Sik Min, Di Pasquale, A.G., Rheingold, A.L., et al., Inorg. Chem., 2007, vol. 46, p. 1048.

  19. Poddel’sky, A.I., Nova Science Publishers, Razeghi, M., Ed., New York, 2012, ch. 12, p. 267.

    Google Scholar 

  20. Cherkasov, V.K., Grunova, E.V., Poddel’sky, A.I., et al., J. Organomet. Chem., 2005, vol. 690, p. 273.

    Article  CAS  Google Scholar 

  21. Poddel’sky, A.I., Somov, N.V., Druzhkov, N.O., et al., J. Organomet. Chem., 2011, vol. 696, no. 2, p. 517.

    Article  CAS  Google Scholar 

  22. Kuropatov, V.A., Klement’eva, S.V., Poddel’sky, A.I., et al., Russ. Chem. Bull. Int. Ed., 2010, vol. 59, no. 9, p. 1698.

    Article  CAS  Google Scholar 

  23. Cherkasov, V.K., Grunova, E.V., and Abakumov, G.A., Izv. Akad. Nauk,Ser. Khim., 2005, vol. 9, p. 2004.

    Google Scholar 

  24. Baryshnikova, S.V., Bellan, E.V., Poddel’sky, A.I., et al., Eur. J. Inorg. Chem., 2016, vol. 33, p. 5230.

    Article  CAS  Google Scholar 

  25. Gordon, A. and Ford, R., The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References, New York: Wiley, 1972.

    Google Scholar 

  26. Frisch, M.J., Gaussian 09 (revision E.01), Wallingford: Gaussian, Inc., 2013.

    Google Scholar 

  27. SAINT. Data Reduction and Correction Program. Version 8.27B, Madison: Bruker AXS Inc., 2014.

  28. CrysAlis Pro, Rigaku Oxford Diffraction, 2015.

  29. Sheldrick, G.M., SADABS-2012/1. Bruker/Siemens Area Detector Absorption Correction Program, Madison: Bruker AXS Inc., 2012.

    Google Scholar 

  30. SCALE3 ABSPACK: Empirical Absorption Correction. CrysAlis Pro-Software Package, Agilent Technologies, 2012.

  31. Sheldrick, G.M., SHELXTL. Version6.14. Structure Determination Software Suite, Madison: Bruker AXS, 2003.

    Google Scholar 

  32. Cherkasov, V.K., Abakumov, G.A., Grunova, E.V., et al., Chem.-Eur. J., 2006, vol. 12, no. 14, p. 3916.

    Article  CAS  PubMed  Google Scholar 

  33. Poddel’sky, A.I., Smolyaninov, I.V., Kurskii, Yu.A., et al., Russ. Chem. Bull. Int. Ed., 2009, vol. 58, no. 3, p. 532.

    Article  CAS  Google Scholar 

  34. Poddel’sky, A.I., Vavilina, N.N., Somov, N.V., et al., J. Organomet. Chem., 2009, vol. 694, no. 21, p. 3462.

    Article  CAS  Google Scholar 

  35. Poddel’sky, A.I. and Smolyaninov, I.V., Russ. J. Gen. Chem., 2010, vol. 80, no. 3, p. 538.

    Article  CAS  Google Scholar 

  36. Poddel’sky, A.I., Smolyaninov, I.V., Berberova, N.T., et al., J. Organomet. Chem., 2015, vols. 789–790, p. 8.

    Article  CAS  Google Scholar 

  37. Poddel’sky, A.I., Arsenyev, M.V., Astaf’eva, T.V., et al., J. Organomet. Chem., 2017, vol. 835, p. 17.

    Article  CAS  Google Scholar 

  38. Poddel’sky, A.I., Okhlopkova, L.S., Meshcheryakova, I.N., et al., Russ. J. Coord. Chem., 2019, vol. 45, p. 133. https://doi.org/10.1134/S1070328419010093

    Article  Google Scholar 

  39. Hall, M. and Sowerby, D.B., J. Am. Chem. Soc., 1980, vol. 102, no. 2, p. 628.

    Article  CAS  Google Scholar 

  40. Holmes, R.R., Day, R.O., Chandrasekhar, V., and Holmes, J.M., Inorg. Chem., 1987, vol. 26, p. 157.

    Article  CAS  Google Scholar 

  41. Dodonov, V.A., Fedorov, A.Yu., Fukin, G.K., et al., Main Group Chem., 1999, vol. 3, no. 1, p. 15.

    Article  CAS  Google Scholar 

  42. Poddel’sky, A.I., Smolyaninov, I.V., Fukin, G.K., et al., J. Organomet. Chem., 2018, vol. 867, p. 238.

    Article  CAS  Google Scholar 

  43. Poddel’sky, A.I., Astaf’eva, T.V., Smolyaninov, I.V., et al., J. Organomet. Chem., 2018, vol. 873, p. 57.

    Article  CAS  Google Scholar 

  44. Arsenyev, M.V., Astaf’eva, T.V., Baranov, E.V., et al., Mendeleev Commun., 2018, vol. 28, p. 76.

    Article  CAS  Google Scholar 

  45. Poddel’sky, A.I., Druzhkov, N.O., Fukin, G.K., et al., Polyhedron, 2017, vol. 124, p. 41.

    Article  CAS  Google Scholar 

  46. Poddel'sky, A.I., Smolyaninov, I.V., Fukin, G.K., et al., J. Organomet. Chem., 2016, vol. 824, p. 1.

    Article  CAS  Google Scholar 

  47. Poddel’sky, A.I., Ilyakina, E.V., Smolyaninov, I.V., et al., Russ. Chem. Bull.,Int. Ed., 2014, vol. 63, no. 4, p. 923.

    Google Scholar 

  48. Poddel’sky, A.I., Baranov, E.V., Fukin, G.K., et al., J. Organomet. Chem., 2013, vol. 733, p. 44.

    Article  CAS  Google Scholar 

  49. Poddel’sky, A.I., Somov, N.V., Druzhkov, N.O., et al., J. Organomet. Chem., 2011, vol. 696, no. 2, p. 517.

    Article  CAS  Google Scholar 

  50. Lide, D.R., CRC Handbook of Chemistry and Physics, CRC Press: Boca-Raton, 2005, p. 513.

  51. Elduque, A., Garces, Y., Lahoz, F.J., et al., Inorg. Chem. Commun., 1999, vol. 2, p. 414.

    Article  CAS  Google Scholar 

  52. Atzori, M., Artizzu, F., Sessini, E., et al., Dalton Trans., 2014, vol. 43, p. 7006.

    Article  CAS  PubMed  Google Scholar 

  53. Palacios-Corella, M., Fernandez-Espejo, A., Bazaga-Garcia, M., et al., Inorg. Chem., 2017, vol. 56, p. 13865.

    Article  CAS  PubMed  Google Scholar 

  54. Fukin, G.K., Cherkasov, A.V., Shurygina, M.P., et al., Struct. Chem., 2010, vol. 21, no. 3, p. 607.

    Article  CAS  Google Scholar 

  55. Folgado, J.V., Ibanez, R., Coronado, E., et al., Inorg. Chem., 1988, vol. 27, p. 19.

    Article  CAS  Google Scholar 

  56. Spengler, R., Lange, J., Zimmermann, H., et al., Acta Crystallogr., Sect. B: Struct. Sci., 1995, vol. 51, p. 174.

    Article  Google Scholar 

  57. Nagayoshi, K., Kabir, Md.K., Tobita, H., et al., J. Am. Chem. Soc., 2003, vol. 125, p. 221.

    Article  CAS  PubMed  Google Scholar 

  58. Ishikawa, R., Horii, Y., Nakanishi, R., et al., Eur. J. Inorg. Chem., 2016, p. 3233.

  59. Dubraja, L., Molcanov, K., Zilic, D., et al., New J. Chem., 2017, vol. 41, p. 6785.

    Article  Google Scholar 

  60. Poddel’sky, A.I., Smolyaninov, I.V., Somov, N.V., et al., J. Organomet. Chem., 2010, vol. 695, no. 4, p. 530.

    Article  CAS  Google Scholar 

  61. Poddel’sky, A.I., Smolyaninov, I.V., Kurskii, Yu.A., et al., J. Organomet. Chem., 2010, vol. 695, no. 8, p. 1215.

    Article  CAS  Google Scholar 

  62. Smolyaninov, I.V., Poddel’skiy, A.I., Berberova, N.T., et al., Russ. J. Coord. Chem., 2010, vol. 36, no. 9, p. 644. https://doi.org/10.1134/S1070328410090022

    Article  CAS  Google Scholar 

  63. Poddel’sky, A.I., Smolyaninov, I.V., Vavilina, N.N., et al., Russ. J. Coord. Chem., 2012, vol. 38, no. 4, p. 284. https://doi.org/10.1134/S1070328412040094

    Article  CAS  Google Scholar 

  64. Poddel’sky, A.I., Arsen’ev, M.V., Okhlopkova, L.S., et al., Russ. J. Coord. Chem., 2017, vol. 43, no. 12, p. 843. https://doi.org/10.1134/S1070328417120089

    Article  Google Scholar 

  65. Smolyaninov, I.V., Antonova, N.A., Poddel’sky, A.I., et al., Appl. Organomet. Chem., 2012, vol. 26, no. 6, p. 277.

    Article  CAS  Google Scholar 

  66. Smolyaninova, S.A., Poddel’sky, A.I., Smolyaninov, I.V., and Berberova, N.T., Russ. J. Coord. Chem., 2014, vol. 40, no. 5, p. 273. https://doi.org/10.1134/S107032841405011X

    Article  CAS  Google Scholar 

  67. Smolyaninov, I.V., Poddel’skii, A.I., Smolyaninova, S.A., and Movchan, N.O., Russ. J. Gen. Chem., 2014, vol. 84, no. 9, p. 1761.

    Article  CAS  Google Scholar 

  68. Smolyaninov, I.V., Poddel’skii, A.I., Smolyaninova, S.A., and Berberova, N.T., Russ. J. Electrochem., 2015, vol. 51, no. 11, p. 1021.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The spectroscopic and X-ray diffraction studies were carried out using the equipment of the Center for Collective Use of the Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences.

Funding

This work was carried out within the State Assignment of the Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Poddel’sky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

The authors congratulate Academician I.L. Eremenko with a 70th birthday

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okhlopkova, L.S., Poddel’sky, A.I., Smolyaninov, I.V. et al. Triphenylantimony(V) Catecholates Based on 3,6-Di-tert-Butyl-2,5-Dihydroxy-1,4-Benzoquinone. Russ J Coord Chem 46, 386–393 (2020). https://doi.org/10.1134/S107032842005005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107032842005005X

Keywords:

Navigation