Skip to main content
Log in

Laser-Induced Graphene on a Polyimide Film: Observation of the Photon Drag Effect

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Film structures of porous graphene have been produced by irradiating a polyimide film with focused radiation of a continuous CO2 laser. The generation of nanosecond photocurrent pulses induced by nanosecond laser pulses in a wide wavelength range has been observed in the obtained structures. It has been demonstrated that the photocurrent increases linearly with pulsed laser power and is an odd function of the angle of incidence of radiation on the film structure. The wavelength dependence of the coefficient of conversion of laser power into photocurrent has been measured. The obtained data have been interpreted as a result of current generation due to photon drag effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. F. Vyatkin, Tech. Phys. Lett. 45, 170 (2019).

    Article  ADS  Google Scholar 

  2. A. B. Loginov, I. V. Bozh’ev, S. N. Bokova-Sirosh, E. D. Obraztsova, R. R. Ismagilov, B. A. Loginov, and A. N. Obraztsov, Tech. Phys. 64, 1666 (2019).

    Article  Google Scholar 

  3. J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, Nat. Commun. 5, 5714 (2014).

    Article  ADS  Google Scholar 

  4. A. Lamberti, F. Perrucci, M. Caprioli, M. Serrapede, M. Fontana, S. Bianco, S. Ferrero, and E. Tresso, Nanotecnology 28, 174002 (2017).

    Article  ADS  Google Scholar 

  5. X. L. Duy, Z. Peng, Y. Li, J. Zhang, Y. Ji, and J. M. Tour, Carbon 126, 472 (2018).

    Article  Google Scholar 

  6. J. B. In, B. Hsia, J.-H. Yoo, J.-H. Yoo, S. Hyun, C. Carraro, R. Maboudian, and C. P. Grigoropoulos, Carbon 83, 144 (2015).

    Article  Google Scholar 

  7. J. Cai, C. Lv, and A. Watanabe, J. Mater. Chem. A 4, 1671 (2016).

    Article  Google Scholar 

  8. R. Ye, D. K. James, and J. M. Tour, Adv. Mater. 31, e1803621 (2019).

    Article  Google Scholar 

  9. P. A. Obraztsov, G. M. Mikheev, S. V. Garnov, A. N. Obraztsov, and Y. P. Svirko, Appl. Phys. Lett. 98, 091903 (2011).

    Article  ADS  Google Scholar 

  10. L. Zhu, Y. Huang, Z. Yao, B. Quan, L. Zhang, J. Li, C. Gu, X. Xu, and Z. Ren, Nanoscale 9, 10301 (2017).

    Article  Google Scholar 

  11. V. M. Kovalev, A. E. Miroshnichenko, and I. G. Savenko, Phys. Rev. B 98, 165405 (2018).

    Article  ADS  Google Scholar 

  12. E. V. Beregulin, P. M. Voronov, S. V. Ivanov, P. S. Kop’ev, and I. D. Yaroshetskii, JETP Lett. 59, 85 (1994).

    ADS  Google Scholar 

  13. G. M. Mikheev, A. S. Saushin, V. M. Styapshin, and Y. P. Svirko, Sci. Rep. 8, 8644 (2018).

    Article  ADS  Google Scholar 

  14. G. M. Mikheev, A. S. Saushin, V. M. Styapshin, and Yu. P. Svirko, Tech. Phys. Lett. 44, 844 (2018).

    Article  ADS  Google Scholar 

  15. G. M. Mikheev, T. N. Mogileva, A. Yu. Popov, and D. G. Kalyuzhny, Instrum. Exp. Tech. 46, 233 (2003).

    Article  Google Scholar 

  16. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

    Article  ADS  Google Scholar 

  17. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rep. 473, 51 (2009).

    Article  ADS  Google Scholar 

  18. L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago, and M. A. Pimenta, Appl. Phys. Lett. 88, 163106 (2006).

    Article  ADS  Google Scholar 

  19. G. M. Mikheev, V. Ya. Kogai, R. G. Zonov, K. G. Mikheev, T. N. Mogileva, and Yu. P. Svirko, JETP Lett. 109, 704 (2019).

    Article  ADS  Google Scholar 

  20. G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, A. P. Volkov, and Yu. P. Svirko, Tech. Phys. Lett. 31, 94 (2005).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank I.V. Reduto (St. Petersburg National Research Academic University, Russian Academy of Sciences) for his help in experiments. Equipment provided by the Center for Collective Use of Udmurt Federal Research Center (Ural Branch, Russian Academy of Sciences) was used in experiments.

Funding

This study was supported by the Russian Science Foundation, project no. 19-72-00071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Mikheev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikheev, K.G., Zonov, R.G., Bulatov, D.L. et al. Laser-Induced Graphene on a Polyimide Film: Observation of the Photon Drag Effect. Tech. Phys. Lett. 46, 458–461 (2020). https://doi.org/10.1134/S1063785020050119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020050119

Keywords:

Navigation