Skip to main content
Log in

Calculating Line Tension for a Simple Model of a Surface Nanobubble

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Line tension is calculated for a simple model of a surface nanobubble formed on a smooth hydrophobic substrate. It is shown that, with an increase in the contact angle at a certain critical value, the surface tension changes sign from positive to negative. This means that the surface tension stretches the nanobubble, increasing its radius of curvature and thereby stabilizing it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. B. Widom, J. Phys. Chem. 99, 2803 (1995). https://doi.org/10.1021/j100009a041

    Article  Google Scholar 

  2. J. W. Drelich, Adv. Colloid Interface Sci. 267, 1 (2019). https://doi.org/10.1016/j.cis.2019.02.002

    Article  Google Scholar 

  3. M. Kanduc, L. Eixeres, S. Liese, and R. R. Netz, Phys. Rev. E 98, 032804 (2018). https://doi.org/10.1103/PhysRevE.98.032804

    Article  ADS  Google Scholar 

  4. J. Drelich, Colloids Surf. A 116, 43 (1996). https://doi.org/10.1016/0927-7757(96)03651-5

    Article  Google Scholar 

  5. Y. Solomentsev and L. R. White, J. Colloid Interface Sci. 218, 122 (1999). https://doi.org/10.1006/jcis.1999.6389

    Article  ADS  Google Scholar 

  6. N. Kameda and S. Nakabayashi, Chem. Phys. Lett. 461, 122 (2008). https://doi.org/10.1016/j.cplett.2008.07.012

    Article  ADS  Google Scholar 

  7. N. Kameda, S. Sogoshi, and S. Nakabayashi, Surf. Sci. 602, 1579 (2008). https://doi.org/10.1016/j.susc.2008.02.023

    Article  ADS  Google Scholar 

  8. J. Yang, J. Duan, D. Fornasiero, and J. Ralston, J. Phys. Chem. B 107, 6139 (2003). https://doi.org/10.1039/B709624K

    Article  Google Scholar 

  9. V. B. Svetovoy, I. Devic, J. H. Snoeijer, and D. Lohse, Langmuir 32, 11188 (2016). https://doi.org/10.1021/acs.langmuir.6b01812

    Article  Google Scholar 

  10. D. Lohse and X. Zhang, Phys. Rev. E 91, 031003 (2015). https://doi.org/10.1103/PhysRevE.91.031003

    Article  ADS  Google Scholar 

  11. A. Marmur, J. Colloid Interface Sci. 186, 462 (1997). https://doi.org/10.1006/jcis.1996.4666

    Article  ADS  Google Scholar 

  12. B. Zhao, S. Luo, E. Bonaccurso, G. K. Auernhammer, X. Deng, Z. Li, and L. Chen, Phys. Rev. Lett. 123, 094501 (2019). https://doi.org/10.1103/PhysRevLett.123.094501

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Koshoridze.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Translated by L. Trubitsyna

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshoridze, S.I. Calculating Line Tension for a Simple Model of a Surface Nanobubble. Tech. Phys. Lett. 46, 416–419 (2020). https://doi.org/10.1134/S1063785020050089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020050089

Keywords:

Navigation