Skip to main content

Advertisement

Log in

Synthesis, characterization, and hypoglycemic efficacy of nitro and amino acridines and 4-phenylquinoline on starch hydrolyzing compounds: an in silico and in vitro study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

α-Amylase and α-Glucosidase are important therapeutic targets for type II diabetes. The present focus of our study is to elucidate the hypoglycemic activity of novel compounds through in vitro and in silico studies. Here, we synthesized the nitro acridines (3a–3c), amino acridines (4a–4c), and nitro phenylquinoline (3d) and amino phenylquinoline (4d) using a multi-step reaction protocol in good yields. All the above derivatives were screened for molecular docking, α-Amylase and α-Glucosidase inhibitory activities utilizing acarbose as standard drug. In silico studies were performed to explore the binding ability of compounds with the active site of α-Amylase and α-Glucosidase enzymes. The in vitro antihyperglycemic report of 3c exhibits the maximum inhibitory activity with IC50 values of 200.61 ± 9.71 μmol/mL and 197.76 ± 8.22 μmol/mL against α-Amylase and α-Glucosidase, respectively. Similarly, the compound 3a exhibits IC50 values of 243.78 ± 13.25 μmol/mL and 296.57 ± 10.66 μmol/mL, and 4c exhibits IC50 values of 304.28 ± 3.51 μmol/mL and 278.86 ± 3.24 μmol/mL with a significant p < 0.05 in both enzyme inhibitions. In addition, the presence of diverse functional moieties in synthesized compounds may provide a strong inhibitory action against the abovementioned enzymes compared with standard acarbose inhibition (IC50, 58.74 ± 3.68 μmol/mL and 49.39 ± 4.94 μmol/mL). Also, the docking studies provided an excellent support for our in vitro studies. The outcome of these studies recommends that the tested compounds might be treated as potential inhibitors for the starch hydrolyzing enzymes in type II diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Palanuvej C, Hokputsa S, Tunsaringkarn T, Ruangrungsi N (2009). Sci Pharm 77(4):837

    CAS  Google Scholar 

  2. Chang LS, Li CB, Qin N, Jin MN, Duan HQ (2012). Chem Biodivers 9(1):162

    Article  CAS  PubMed  Google Scholar 

  3. Ditzel J, Lervang HH (2009). Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2:173

    Article  CAS  Google Scholar 

  4. Sales PM, Souza PM, Simeoni LA, Magalhães PO, Silveira D, Pharm J (2012). Pharm Sci 15:141–183

    Google Scholar 

  5. Lebovitz HE (1998). Diabetes Rev 6:132–145

    Google Scholar 

  6. Tundis R, Loizzo MR, Menichini F (2010). Med Chem 10:315–331

    CAS  Google Scholar 

  7. Sondhi SM, Singh J, Rani R, Gupta PP, Agrawal SK, Saxena AK (2010). Eur J Med Chem 45:555–563

    Article  CAS  PubMed  Google Scholar 

  8. Gupta SK (2004). Drug screening methods (Pre clinical evaluation of new drugs) 2nd edn. Jaypee Medical Publishers (P) Ltd, New Delhi, pp 306–309

  9. Korth C, May BC, Cohen FE, Prusiner SB (2001). Proc Natl Acad Sci U S A 98:9836–9841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Temple MD, McFadyen WD, Holmes RJ, Denny WA, Murray V (2000). Biochemistry. 39:5593–5599

    Article  CAS  PubMed  Google Scholar 

  11. Riera X, Moreno V, Noe V, Font-Bardía M, Solans X (2007). Bioinorg Chem Appl:98732 https://doi.org/10.1155/2007/98732

  12. Jiang D, Tam AB, Alagappan M, Hay MP, Gupta A, Kozak MM, Le QT (2016). Mol Cancer Them 15:2055–2065

  13. Cholewiński G, Dzierzbicka K, Kołodziejczyk AM (2011). Pharmacol Rep 63:305–336

  14. Pang X, Chen C, Su X, Li M, Wen L (2014). Org Lett 16:6228–6231

    Article  CAS  PubMed  Google Scholar 

  15. Peacocke AR, Nicholson BH, Dean ACR, Clayson DB, Henry DW (1973) Heterocycl. Compd. John Wiley, New York, p 723

    Google Scholar 

  16. Ketron AC, Denny WA, Graves DE, Osheroff N (2012). Biochemistry. 51:1730–1739

    Article  CAS  PubMed  Google Scholar 

  17. Amuthalakshmi S, Smith AA (2013). Adv Biol Res 7:248–252

    CAS  Google Scholar 

  18. Kubinyi H (1998). Curr Opin Drug Discov Devel 1:16–27

    CAS  PubMed  Google Scholar 

  19. Levetan C (2007). Curr Med Res Opin 23:945–952

    Article  CAS  PubMed  Google Scholar 

  20. Rajesh YB (2018). Quinoline Heterocycles: synthesis and bioactivity In heterocycles-synthesis and biological activities. Intechopen.com. https://doi.org/10.5772/intechopen.81239

  21. Hansawasdi C, Kawabata J, Kasai T (2000). Biosci Biotechnol Biochem 64:1041–1043

    Article  CAS  PubMed  Google Scholar 

  22. Kim YM, Jeong YK, Wang MH, Lee WY, Rhee HI (2005). Nutrition. 21:756–761

    Article  CAS  PubMed  Google Scholar 

  23. Li AP (2001). Drug Discov Today 6:357–366

    Article  CAS  PubMed  Google Scholar 

  24. Lipinski CA (2000). J Pharmacol Toxicol Methods 44:235–249

    Article  CAS  PubMed  Google Scholar 

  25. Sugiyama Y (2005). Drug Discov Today 10:1577–1579

  26. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012). Adv Drug Deliv Rev 64:4–17

    Article  Google Scholar 

  27. Agoram B, Woltosz WS, Bolger MB (2001). Adv Drug Deliv Rev 50:S41–S67

    Article  CAS  PubMed  Google Scholar 

  28. Cheemanapalli S, Anuradha CM, Madhusudhana P, Mahesh M, Raghavendra PB, Kumar CS (2016). Anti Cancer Agents Med Chem 16:1496–1510

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the VIT University in Vellore, India, for giving facilities to convey explore work. The authors are likewise appreciative to the Department of Biotechnology, School of Herbal Studies, and Nature Sciences in Dravidian University, Kuppam, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Vijayakumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1823 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanaswamy, L., Yarrappagaari, S., Cheemanapallia, S. et al. Synthesis, characterization, and hypoglycemic efficacy of nitro and amino acridines and 4-phenylquinoline on starch hydrolyzing compounds: an in silico and in vitro study. Struct Chem 31, 2063–2074 (2020). https://doi.org/10.1007/s11224-020-01529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01529-5

Keywords

Navigation