Skip to main content
Log in

Nonarchimedean components of non-endoscopic automorphic representations for quasisplit Sp(N) and O(N)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Arthur classified the discrete automorphic representations of symplectic and orthogonal groups over a number field by that of the general linear groups. In this classification, those that are not from endoscopic lifting correspond to pairs \((\phi , b)\), where \(\phi \) is an irreducible unitary cuspidal automorphic representation of some general linear group and b is an integer. In this paper, we study the local components of these automorphic representations at a nonarchimedean place, and we give a complete description of them in terms of their Langlands parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arthur, J.: The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups, Colloquium Publications, vol. 61. American Mathematical Society, New York (2013)

    Google Scholar 

  2. Henniart, G.: Une preuve simple des conjectures de Langlands pour \({\rm GL}(n)\) sur un corps \(p\)-adique. Invent. Math. 139(2), 439–455 (2000)

    Article  MathSciNet  Google Scholar 

  3. Harris, M., Taylor, R.: The geometry and cohomology of some simple Shimura varieties. Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, With an appendix by Vladimir G. Berkovich (2001)

  4. Langlands, R. P.: On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, pp. 101–170 (1989)

  5. Mœglin, C.: Paquets d’arthur pour les groupes classiques; point de vue combinatoire. arXiv:math/0610189 (2006)

  6. Mœglin, C.: Paquets d’Arthur discrets pour un groupe classique \(p\)-adique, Automorphic forms and \(L\)-functions II. Local aspects, Contemp. Math., vol. 489, Amer. Math. Soc., Providence, RI, pp. 179–257 (2009)

  7. Mœglin, C.: Multiplicité 1 dans les paquets d’Arthur aux places \(p\)-adiques, On certain \(L\)-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, pp. 333–374 (2011)

  8. Scholze, P.: The local Langlands correspondence for \({GL}_n\) over \(p\)-adic fields. Invent. Math. 192(3), 663–715 (2013)

    Article  MathSciNet  Google Scholar 

  9. Xu, B.: On Mœglin’s parametrization of Arthur packets for p-adic quasisplit \(Sp(N)\) and \(SO(N)\). Can. J. Math. 69(4), 890–960 (2017)

    Article  Google Scholar 

  10. Xu, B.: A combinatorial solution to Mœglin’s parametrization of Arthur packets for p-adic quasisplit \(Sp(N)\) and \(O(N)\), J. Inst. Math. Jussieu. 1 – 114 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Tsinghua University Initiative Scientific Research Program (No. 2019Z07L02016) .

Appendices

Appendix A: A nonvanishing result

In this appendix, we will prove the following nonvanishing result. Let \(\psi \) be an Arthur parameter of G(F) (cf. (1.2)) under the Assumption (1.5). Let \(>_{\psi }\) be an admissible order and we index the Jordan blocks in \(Jord(\psi )\) such that

$$\begin{aligned} (\rho , A_{i+1}, B_{i+1}, \zeta _{i+1}) >_{\psi } (\rho , A_{i}, B_{i}, \zeta _{i}). \end{aligned}$$

Let

$$\begin{aligned} J {:=} \cup _{i = 1}^{n}\{(\rho , A_{i}, B_{i}, \zeta _{i})\} \subseteq Jord(\psi ) \end{aligned}$$

Suppose

$$\begin{aligned} A_{i+1} \geqslant A_{i}, \quad B_{i+1} \geqslant B_{i}, \quad \zeta _{i+1} = \zeta _{i} \quad \text { for } i < n \end{aligned}$$

and

$$\begin{aligned} J^{c} \gg J, \quad J^{c} \text { has discrete diagonal restriction}, \end{aligned}$$

where \(J^{c} {:=} Jord(\psi ) \backslash J\). Then we have the following theorem.

Theorem A.1

\(\pi ^{\Sigma _{0}}_{M, >_{\psi }}(\psi , \underline{l}, \underline{\eta }) \ne 0\) if and only if the following condition are satisfied for all \(i < n\):

$$\begin{aligned} {\left\{ \begin{array}{ll} \eta _{i+1} = (-1)^{A_{i} - B_{i}}\eta _{i} &{} \Rightarrow A_{i+1} - l_{i+1} \geqslant A_{i} - l_{i}, \quad B_{i+1} + l_{i+1} \geqslant B_{i} + l_{i}, \\ \eta _{i+1} \ne (-1)^{A_{i} - B_{i}}\eta _{i} &{} \Rightarrow B_{i+1} + l_{i+1} > A_{i} - l_{i} \end{array}\right. } \end{aligned}$$
(A.1)

Proof

The necessity of the condition follows from [10, Lemma 5.5]. So it remains to prove its sufficiency. We will proceed by induction on |J|. If \(|J| = 2\), this has been proved in [10, Proposition 5.2].

Suppose \(|J| = m+1\). We first “expand” \([B_{m+1}, A_{m+1}]\) to \([B^{*}_{m+1}, A^{*}_{m+1}]\) (cf. [10, Section 7.2]), so that \(B_{m+1}^{*} = B_{m}\). By [10, Proposition 7.4], we know \(\pi ^{\Sigma _{0}}_{M, >_{\psi }}(\psi , \underline{l}, \underline{\eta }) \ne 0\) if and only if

$$\begin{aligned} \pi ^{\Sigma _{0}}_{M, >_{\psi }} \Big (\psi _{-}, \underline{l}_{-}, \underline{\eta }_{-}; (\rho , A^{*}_{m+1}, B^{*}_{m+1}, l^{*}_{m+1}, \eta _{m+1}, \zeta _{m+1}) \Big ) \ne 0 \end{aligned}$$
(A.2)

where \(\psi _{-}\) is defined by

$$\begin{aligned} Jord(\psi _{-}) = Jord(\psi ) \backslash \{(\rho , A_{m+1}, B_{m+1}, \zeta _{m+1})\} \end{aligned}$$

and

$$\begin{aligned} l^{*}_{m+1} = l_{m+1} + (B_{m+1} - B_{m}). \end{aligned}$$

It is easy to check that the condition (A.1) holds for \(\pi ^{\Sigma _{0}}_{M, >_{\psi }}(\psi , \underline{l}, \underline{\eta })\) if and only if it holds for the representation in (A.2). So we will assume \(B_{m+1} = B_{m}\) from now on.

Next we can “pull” \([B_{m+1}, A_{m+1}], [B_{m}, A_{m}]\) (cf. [10, 7.1]), so that they are far away from \(\cup _{i < m}\{(\rho , A_{i}, B_{i}, \zeta _{i})\}\). By [10, Proposition 7.1, 7.3], we know \(\pi ^{\Sigma _{0}}_{M, >_{\psi }}(\psi , \underline{l}, \underline{\eta }) \ne 0\) if the following representations are all nonzero. So it suffices to show each of them is nonzero by our induction assumption. Let \(\psi _{-}\) be defined by

$$\begin{aligned} Jord(\psi _{-}) = Jord(\psi ) \backslash \{(\rho , A_{m+1}, B_{m+1}, \zeta _{m+1}), (\rho , A_{m}, B_{m}, \zeta _{m})\}. \end{aligned}$$
  1. (1)

    Show

    $$\begin{aligned}&\pi ^{\Sigma _{0}}_{M, >_{\psi }} \Big (\psi _{-}, \underline{l}_{-}, \underline{\eta }_{-}; (\rho , A_{m+1} + T, B_{m+1} + T, l_{m+1}, \eta _{m+1}, \zeta _{m+1}), (\rho , A_{m} \nonumber \\&\quad +T, B_{m} + T, l_{m}, \eta _{m}, \zeta _{m})\Big ) \ne 0 \end{aligned}$$
    (A.3)

    for some T. Let \(J_{-} = Jord(\psi _{-})\). Then we will choose T so that \(J^{c}_{-} \gg J_{-}\). To make \(J^{c}_{-}\) having discrete diagonal restriction, we will shift \([B_{m+1} + T, A_{m+1} + T]\) further to \([B_{m+1} + T', A_{m+1} + T']\) such that \(B_{m+1} + T' > A_{m} +T\). Then by our induction assumption,

    $$\begin{aligned}&\pi ^{\Sigma _{0}}_{M, >_{\psi }} \Big (\psi _{-}, \underline{l}_{-}, \underline{\eta }_{-}; (\rho , A_{m+1} + T', B_{m+1} + T', l_{m+1}, \eta _{m+1}, \zeta _{m+1}), (\rho , A_{m} \\&\quad +T, B_{m} + T, l_{m}, \eta _{m}, \zeta _{m}) \Big ) \ne 0 \end{aligned}$$

    Let \(\psi _{\gg }\) be the dominating parameter with discrete diagonal restriction, obtained by shifting \([B_{i}, A_{i}]\) to \([B_{i} + T_{i}, A_{i} + T_{i}]\) with \(A_{i} + T_{i} < B_{m} + T\) for all \(1 \leqslant i \leqslant m - 1\). Then

    $$\begin{aligned} \pi ^{\Sigma _{0}}_{M,>_{\psi }}(\psi _{\gg }, \underline{l}, \underline{\eta }) \hookrightarrow \times _{i < m} \begin{pmatrix} \zeta _{i}(B_{i} + T_{i}) &{} \cdots &{} \zeta _{i}(B_{i} + 1) \\ \vdots &{} &{} \vdots \\ \zeta _{i}(A_{i} + T_{i}) &{} \cdots &{} \zeta _{i}(A_{i} + 1) \end{pmatrix} \rtimes \pi ^{\Sigma _{0}}_{M, >_{\psi }}\Big (\psi _{-}, \underline{l}_{-}, \underline{\eta }_{-}; \\ (\rho , A_{m+1} + T', B_{m+1} + T', l_{m+1}, \eta _{m+1}, \zeta _{m+1}), (\rho , A_{m} +T, B_{m} + T, l_{m}, \eta _{m}, \zeta _{m}) \Big ) \end{aligned}$$

    By [10, Proposition 5.2],

    $$\begin{aligned} \text {Jac}_{(\rho , A_{m+1} + T', B_{m+1} + T', \zeta _{m+1}) \mapsto (\rho , A_{m+1} + T, B_{m+1} + T, \zeta _{m+1})} \pi ^{\Sigma _{0}}_{M, >_{\psi }}(\psi _{\gg }, \underline{l}, \underline{\eta }) \ne 0. \end{aligned}$$

    So after we apply the same Jacquet functor to the full induced representation above, we should get something nonzero. Since \(B_{m+1} + T + 1 > A_{i} + T_{i}\) for \(i < m\), the result is

    $$\begin{aligned}&\times _{i < m} \begin{pmatrix} \zeta _{i}(B_{i} + T_{i}) &{} \cdots &{} \zeta _{i}(B_{i} + 1) \\ \vdots &{} &{} \vdots \\ \zeta _{i}(A_{i} + T_{i}) &{} \cdots &{} \zeta _{i}(A_{i} + 1) \end{pmatrix}\\&\quad \rtimes \text {Jac}_{(\rho , A_{m+1} + T', B_{m+1} + T', \zeta _{m+1}) \mapsto (\rho , A_{m+1} + T, B_{m+1} + T, \zeta _{m+1})} \\&\quad \pi ^{\Sigma _{0}}_{M, >_{\psi }} \Big (\psi _{-}, \underline{l}_{-}, \underline{\eta }_{-}; (\rho , A_{m+1} + T', B_{m+1} + T', l_{m+1}, \eta _{m+1}, \zeta _{m+1}),\\&\quad (\rho , A_{m} +T, B_{m} + T, l_{m}, \eta _{m}, \zeta _{m}) \Big ) \ne 0 \end{aligned}$$

    This shows (A.3).

  2. (2)

    Show

    $$\begin{aligned} \pi ^{\Sigma _{0}}_{M, >_{\psi }} \Big (\psi _{-}, \underline{l}_{-}, \underline{\eta }_{-}; (\rho , A_{m+1} + T, B_{m+1} + T, l_{m+1}, \eta _{m+1}, \zeta _{m+1}), (\rho , A_{m}, B_{m}, l_{m}, \eta _{m}, \zeta _{m})\Big ) \ne 0 \end{aligned}$$
    (A.4)

    for some T. Let \(J_{-} = Jord(\psi _{-}) \sqcup \{(\rho , A_{m}, B_{m}, \zeta _{m})\}\). We can choose T so that \(J_{-}^{c} \gg J_{-}\). Then the statement follows from our induction assumption immediately.

  3. (3)

    Show

    $$\begin{aligned}&\pi ^{\Sigma _{0}}_{M, >'_{\psi }}\Big (\psi _{-}, \underline{l}'_{-}, \underline{\eta }'_{-}; (\rho , A_{m+1}, B_{m+1}, l'_{m+1}, \eta '_{m+1}, \zeta _{m+1}), \nonumber \\&\quad (\rho , A_{m} + T, B_{m} +T , l'_{m}, \eta '_{m}, \zeta _{n-1})\Big ) \ne 0 \end{aligned}$$
    (A.5)

    for some T, where \(>'_{\psi }\) is obtained by switching \((\rho , A_{m+1}, B_{m+1}, \zeta _{m+1})\) with \((\rho , A_{m}, B_{m}, \zeta _{m})\), and \((\underline{l}', \underline{\eta }') = S^{+}_{m+1}(\underline{l}, \underline{\eta })\) (cf. [10, Section 6.1]) given by the change of order formula. Let \(J_{-} = Jord(\psi _{-}) \sqcup \{(\rho , A_{m+1}, B_{m+1}, \zeta _{m+1})\}\). We can choose T so that \(J_{-}^{c} \gg J_{-}\). Then the statement follows from our induction assumption again, provided we can verify the representation in (A.5) satisfies (A.1). Indeed, we only need to show

    $$\begin{aligned} {\left\{ \begin{array}{ll} \eta '_{m+1} = (-1)^{A_{m-1} - B_{m-1}} \eta _{m-1} &{} \Rightarrow A_{m +1} - l'_{m +1} \geqslant A_{m-1} - l_{m-1}, \quad B_{m +1} + l'_{ m+1} \geqslant B_{m-1} + l_{m-1}, \\ \eta '_{m+1} \ne (-1)^{A_{m-1} - B_{m-1}} \eta _{m-1} &{} \Rightarrow B_{m +1} + l'_{m +1} > A_{m-1} - l_{m-1}. \end{array}\right. } \end{aligned}$$
    (A.6)

    We leave it to the next lemma.\(\square \)

Lemma A.2

(A.6) holds.

Proof

We divide into three cases according to the change of order formula.

  1. (1)

    If \(\eta _{m+1} \ne (-1)^{A_{m} - B_{m}} \eta _{m}\), then

    $$\begin{aligned} {\left\{ \begin{array}{ll} \eta '_{m + 1} = \eta _{m} \\ l'_{m+1} = (B_{m} + l_{m}) - (A_{m} - l_{m}) + l_{m+1} - 1 \end{array}\right. } \end{aligned}$$

    We get

    $$\begin{aligned} B_{m+1} + l'_{m+1} = (B_{m+1} + l_{m+1}) + (B_{m} + l_{m}) - (A_{m} - l_{m}) - 1 \\ A_{m+1} - l'_{m+1} = (A_{m+1} - l_{m+1}) + (A_{m} - l_{m}) - (B_{m} + l_{m}) + 1 \end{aligned}$$

    By (A.1), we have

    $$\begin{aligned} B_{m+1} + l_{m+1} > A_{m} - l_{m}. \end{aligned}$$
    1. (a)

      When \(\eta _{m} \ne (-1)^{A_{m-1} - B_{m-1}} \eta _{m-1}\), then \(\eta '_{m + 1} \ne (-1)^{A_{m-1} - B_{m-1}} \eta _{m-1}\). We need to show

      $$\begin{aligned} B_{m+1} + l'_{m+1} > A_{m-1} - l_{m-1}. \end{aligned}$$

      By (A.1), we have

      $$\begin{aligned} B_{m} + l_{m} > A_{m-1} - l_{m-1}. \end{aligned}$$

      Then

      $$\begin{aligned} B_{m+1} + l'_{m+1} \geqslant B_{m} + l_{m} > A_{m-1} - l_{m-1}. \end{aligned}$$
    2. (b)

      When \(\eta _{m} = (-1)^{A_{m-1} - B_{m-1}} \eta _{m-1}\), then \(\eta '_{m + 1} = (-1)^{A_{m-1} - B_{m-1}} \eta _{m-1}\). We need to show

      $$\begin{aligned} {\left\{ \begin{array}{ll} B_{m+1} + l'_{m+1} \geqslant B_{m-1} + l_{m-1} \\ A_{m+1} - l'_{m+1} \geqslant A_{m-1} - l_{m-1} \end{array}\right. } \end{aligned}$$

      By (A.1), we have

      $$\begin{aligned} {\left\{ \begin{array}{ll} B_{m} + l_{m} \geqslant B_{m-1} + l_{m-1} \\ A_{m} - l_{m} \geqslant A_{m-1} - l_{m-1} \end{array}\right. } \end{aligned}$$

      Then

      $$\begin{aligned} B_{m+1} + l'_{m+1}&\geqslant B_{m} + l_{m} \geqslant B_{m-1} + l_{m-1} \\ A_{m+1} - l'_{m+1}&\geqslant A_{m+1} - l_{m+1} \geqslant A_{m} - l_{m} \geqslant A_{m-1} - l_{m-1} \end{aligned}$$
  2. (2)

    If \(\eta _{m+1} = (-1)^{A_{m} - B_{m}} \eta _{m}\) and

    $$\begin{aligned} l_{m+1} - l_{m} < (A_{m+1} - B_{m+1})/2 - (A_{m} - B_{m}) + l_{m}, \end{aligned}$$

    then

    $$\begin{aligned} {\left\{ \begin{array}{ll} \eta '_{m + 1} \ne \eta _{m} \\ l'_{m+1} = (A_{m} - l_{m}) - (B_{m} + l_{m}) + l_{m+1} - 1 \end{array}\right. } \end{aligned}$$

    We get

    $$\begin{aligned} B_{m+1} + l'_{m+1} = (B_{m+1} + l_{m+1}) - (B_{m} + l_{m}) + (A_{m} - l_{m}) + 1 \\ A_{m+1} - l'_{m+1} = (A_{m+1} - l_{m+1}) - (A_{m} - l_{m}) + (B_{m} + l_{m}) - 1 \end{aligned}$$

    By (A.1), we have

    $$\begin{aligned} {\left\{ \begin{array}{ll} B_{m+1} + l_{m+1} \geqslant B_{m} + l_{m} \\ A_{m+1} - l_{m+1} \geqslant A_{m} - l_{m} \end{array}\right. } \end{aligned}$$
    1. (a)

      When \(\eta _{m} \ne (-1)^{A_{m-1} - B_{m-1}} \eta _{m-1}\), then \(\eta '_{m + 1} = (-1)^{A_{m-1} - B_{m-1}} \eta _{m-1}\). We need to show

      $$\begin{aligned} {\left\{ \begin{array}{ll} B_{m+1} + l'_{m+1} \geqslant B_{m-1} + l_{m-1} \\ A_{m+1} - l'_{m+1} \geqslant A_{m-1} - l_{m-1} \end{array}\right. } \end{aligned}$$

      By (A.1), we have

      $$\begin{aligned} B_{m} + l_{m} > A_{m-1} - l_{m-1}. \end{aligned}$$

      Then

      $$\begin{aligned} B_{m+1} + l'_{m+1}&\geqslant (A_{m} - l_{m}) + 1 \geqslant (A_{m-1} - l_{m-1}) + 1 \geqslant B_{m-1} + l_{m-1} \\ A_{m+1} - l'_{m+1}&\geqslant (B_{m} + l_{m}) - 1 \geqslant A_{m-1} - l_{m-1} \end{aligned}$$
    2. (b)

      When \(\eta _{m} = (-1)^{A_{m-1} - B_{m-1}} \eta _{m-1}\), then \(\eta '_{m + 1} \ne (-1)^{A_{m-1} - B_{m-1}} \eta _{m-1}\). We need to show

      $$\begin{aligned} B_{m+1} + l'_{m+1} > A_{m-1} - l_{m-1} \end{aligned}$$

      By (A.1), we have

      $$\begin{aligned} {\left\{ \begin{array}{ll} B_{m} + l_{m} \geqslant B_{m-1} + l_{m-1} \\ A_{m} - l_{m} \geqslant A_{m-1} - l_{m-1} \end{array}\right. } \end{aligned}$$

      Then

      $$\begin{aligned} B_{m+1} + l'_{m+1} \geqslant (A_{m} - l_{m}) + 1 \geqslant (A_{m-1} - l_{m-1}) + 1 > A_{m-1} - l_{m-1} \end{aligned}$$
  3. (3)

    If \(\eta _{m+1} = (-1)^{A_{m} - B_{m}} \eta _{m}\) and

    $$\begin{aligned} l_{m+1} - l_{m} \geqslant (A_{m+1} - B_{m+1})/2 - (A_{m} - B_{m}) + l_{m}, \end{aligned}$$

    then

    $$\begin{aligned} {\left\{ \begin{array}{ll} \eta '_{m + 1} = \eta _{m} \\ l'_{m+1} = (A_{m+1} - B_{m+1}) - l_{m+1} - (A_{m} - l_{m}) + (B_{m} + l_{m}) \end{array}\right. } \end{aligned}$$

    We get

    $$\begin{aligned} B_{m+1} + l'_{m+1} = (A_{m+1} - l_{m+1}) - (A_{m} - l_{m}) + (B_{m} + l_{m}) \\ A_{m+1} - l'_{m+1} = (B_{m+1} + l_{m+1}) - (B_{m} + l_{m}) + (A_{m} - l_{m}) \end{aligned}$$

    By (A.1), we have

    $$\begin{aligned} {\left\{ \begin{array}{ll} B_{m+1} + l_{m+1} \geqslant B_{m} + l_{m} \\ A_{m+1} - l_{m+1} \geqslant A_{m} - l_{m} \end{array}\right. } \end{aligned}$$
    1. (a)

      When \(\eta _{m} \ne (-1)^{A_{m-1} - B_{m-1}} \eta _{m-1}\), then \(\eta '_{m + 1} \ne (-1)^{A_{m-1} - B_{m-1}} \eta _{m-1}\). We need to show

      $$\begin{aligned} B_{m+1} + l'_{m+1} > A_{m-1} - l_{m-1} \end{aligned}$$

      By (A.1), we have

      $$\begin{aligned} B_{m} + l_{m} > A_{m-1} - l_{m-1}. \end{aligned}$$

      Then

      $$\begin{aligned} B_{m+1} + l'_{m+1} \geqslant B_{m} + l_{m} > A_{m-1} - l_{m-1} \end{aligned}$$
    2. (b)

      When \(\eta _{m} = (-1)^{A_{m-1} - B_{m-1}} \eta _{m-1}\), then \(\eta '_{m + 1} = (-1)^{A_{m-1} - B_{m-1}} \eta _{m-1}\). We need to show

      $$\begin{aligned} {\left\{ \begin{array}{ll} B_{m+1} + l'_{m+1} \geqslant B_{m-1} + l_{m-1} \\ A_{m+1} - l'_{m+1} \geqslant A_{m-1} - l_{m-1} \end{array}\right. } \end{aligned}$$

      By (A.1), we have

      $$\begin{aligned} {\left\{ \begin{array}{ll} B_{m} + l_{m} \geqslant B_{m-1} + l_{m-1} \\ A_{m} - l_{m} \geqslant A_{m-1} - l_{m-1} \end{array}\right. } \end{aligned}$$

      Then

      $$\begin{aligned} B_{m+1} + l'_{m+1} \geqslant B_{m} + l_{m} \geqslant B_{m-1} + l_{m-1} \\ A_{m+1} - l'_{m+1} \geqslant A_{m} - l_{m} \geqslant A_{m-1} - l_{m-1} \end{aligned}$$

\(\square \)

More generally, we can drop the Assumption (1.5), but only assume \(\psi = \psi _{p}\). Suppose for each \(\rho \) appearing in \(Jord(\psi )\), we have the same setup as in Theorem A.1. Then we have

Theorem A.3

\(\pi ^{\Sigma _{0}}_{M, >_{\psi }}(\psi , \underline{l}, \underline{\eta }) \ne 0\) if and only if the condition (A.1) is satisfied for each \(\rho \).

Proof

We can apply the arguments of the proof of Theorem A.1 to each \(\rho \) one by one, which reduces it to the case that \(|J| = 2\) for each \(\rho \). Then this case follows from [10, Proposition 5.3]. \(\square \)

Appendix B. Change sign

In this appendix, we would like to extend [10, Proposition 7.6] as follows. Let \(\psi \) be an Arthur parameter of G(F) such that \(\psi = \psi _{p}\). We choose an admissible order \(>_{\psi }\) and fix an irreducible unitary supercuspidal representation \(\rho \) of \(GL(d_{\rho }, F)\). Let us index the Jordan blocks in \(Jord_{\rho }(\psi )\) such that

$$\begin{aligned} (\rho , A_{i+1}, B_{i+1}, \zeta _{i+1}) >_{\psi } (\rho , A_{i}, B_{i}, \zeta _{i}). \end{aligned}$$

Suppose there exists n such that for \(i > n\),

$$\begin{aligned} (\rho , A_{i}, B_{i}, \zeta _{i}) \gg \cup _{j=1}^{n}\{(\rho , A_{j}, B_{j}, \zeta _{j})\}. \end{aligned}$$

Moreover, there exists \(1 \leqslant m \leqslant n\) such that

$$\begin{aligned} A_m = \cdots = A_1 \geqslant A_i, \quad B_m = \cdots = B_1 = 1/2, \quad \zeta _{m} = \cdots = \zeta _{1} \ne \zeta _{i} \end{aligned}$$

for \(m < i \leqslant n\). We introduce another parameter \(\psi ^{*}\) by changing \((\rho , A_{i}, B_{i}, \zeta _{i})\) to \((\rho , A_{i} + 1, B_{i}, -\zeta _{i})\) for \(i \leqslant m\). For any \((\underline{l}, \underline{\eta })\), such that

$$\begin{aligned} \quad l_{i+1} = l_{i}, \quad \eta _{i+1} = (-1)^{A_{i} - \frac{1}{2}}\eta _{i} \quad \text { for } i < m, \end{aligned}$$
(B.1)

we can associate it with \((\underline{l}^*, \underline{\eta }^*)\), defined as follows. For \(i > m\),

$$\begin{aligned} l^{*}_{i} = l_{i}, \quad \eta ^{*}_{i} = \eta _{i}. \end{aligned}$$

For \(i < m\),

$$\begin{aligned} l^{*}_{i+1} = l^{*}_{i}, \quad \eta ^{*}_{i+1} = (-1)^{A_{i} + \frac{1}{2}} \eta ^{*}_{i}. \end{aligned}$$
(B.2)

Then it remains to specify \(l^{*}_1, \eta ^{*}_1\), which are given by

$$\begin{aligned} \eta ^{*}_{1} = -\eta _{1}, \quad l^{*}_{1} = {\left\{ \begin{array}{ll} l_{1} + 1 &{} \text { if } \eta _{1} = 1 \\ l_{1} &{} \text { if } \eta _{1} = -1 \\ \end{array}\right. } \end{aligned}$$

In case \(l_{1} = (A_1 + \frac{1}{2})/2\), we fix \(\eta _{1} = -1\).

Proposition B.1

\(\pi ^{\Sigma _{0}}_{M, >_{\psi }}(\psi , \underline{l}, \underline{\eta }) \ne 0\) if and only if \(\pi ^{\Sigma _{0}}_{M, >_{\psi }}(\psi ^{*}, \underline{l}^{*}, \underline{\eta }^{*}) \ne 0\). Moreover,

$$\begin{aligned} \pi ^{\Sigma _{0}}_{M,>_{\psi }}(\psi ^{*}, \underline{l}^{*}, \underline{\eta }^{*}) \hookrightarrow \times _{i = 1}^{m} \langle -\zeta _{i}1/2, \ldots , -\zeta _{i}(A_{i} + 1) \rangle \rtimes \pi ^{\Sigma _{0}}_{M, >_{\psi }}(\psi , \underline{l}, \underline{\eta }) \end{aligned}$$
(B.3)

Remark B.2

[10, Proposition 7.6] settles the case when \(m = 1\).

Proof

As in the proof of [10, Proposition 7.6], we can reduce it to the case that

$$\begin{aligned} m = n \text { and } Jord(\psi ) \backslash \cup _{i=1}^{n}\{(\rho , A_{i}, B_{i}, \zeta _{i})\} \text { has discrete diagonal restriction}. \end{aligned}$$

Because of the conditions (B.1) and (B.2), we have

$$\begin{aligned} \pi ^{\Sigma _{0}}_{M,>_{\psi }}(\psi , \underline{l}, \underline{\eta }) \ne 0 \text { and } \pi ^{\Sigma _{0}}_{M, >_{\psi }}(\psi ^{*}, \underline{l}^{*}, \underline{\eta }^{*}) \ne 0 \end{aligned}$$

by Theorem A.3. So we only need to show (B.3), and we will proceed by induction on n.

Let \(\psi ^{*}_{>}\) be obtained from \(\psi ^{*}\) by changing \((\rho , A_{n} + 1, 1/2, -\zeta _{n})\) to \((\rho , A_{n} + 1 + T_{n}, 1/2 + T_{n}, -\zeta _{n})\) for \(T_{n}\) sufficiently large. Then by our induction assumption, we have

$$\begin{aligned} \pi ^{\Sigma _{0}}_{M,>_{\psi }}(\psi ^{*}_{>}, \underline{l}^{*}, \underline{\eta }^{*}) \hookrightarrow \times _{i = 1}^{n-1} \langle -\zeta _{i}1/2, \ldots , -\zeta _{i}(A_{i} + 1) \rangle \rtimes \pi ^{\Sigma _{0}}_{M,>_{\psi }}(\psi ^{(n)}_{>}, \underline{l}^{(n)}, \underline{\eta }^{(n)}) \end{aligned}$$

where \(\psi ^{(n)}_{>}\) is obtained from \(\psi ^{*}_{>}\) by changing \((\rho , A_{i} + 1, 1/2, -\zeta _{i})\) back to \((\rho , A_{i}, 1/2, \zeta _{i})\) for \(1 \leqslant i < n\). Moreover,

$$\begin{aligned} l^{(n)}_{i} = l_{i}, \quad \eta ^{(n)}_{i} = \eta _{i} \quad \text { for } i < n, \end{aligned}$$

and

$$\begin{aligned} l^{(n)}_{i} = l^{*}_{i}, \quad \eta ^{(n)}_{i} = \eta ^{*}_{i} \quad \text { for } i \geqslant n. \end{aligned}$$

Then we claim

$$\begin{aligned} \pi ^{\Sigma _{0}}_{M,>_{\psi }}(\psi ^{(n)}_{>}, \underline{l}^{(n)}, \underline{\eta }^{(n)}) \hookrightarrow \underbrace{\begin{pmatrix} -\zeta _{n}(1/2 + T_{n}) &{} \cdots &{} -\zeta _{n}1/2 \\ \vdots &{} &{} \vdots \\ -\zeta _{n}(A_{n} + 1 + T_{n}) &{} \cdots &{} -\zeta _{n}(A_{n} + 1) \end{pmatrix}}_{{\mathcal {C}}_{X_{n}}} \rtimes \pi ^{\Sigma _{0}}_{M, >_{\psi }}(\psi , \underline{l}, \underline{\eta }). \end{aligned}$$
(B.4)

where

$$\begin{aligned} X_{n} {:=} \begin{bmatrix} -\zeta _{n}(1/2 + T_{n}) &{} \cdots &{} -\zeta _{n}1/2 \\ \vdots &{} &{} \vdots \\ -\zeta _{n}(A_{n} + 1 + T_{n}) &{} \cdots &{} -\zeta _{n}(A_{n} + 1) \end{bmatrix} \end{aligned}$$

If this is the case, then

$$\begin{aligned} \pi ^{\Sigma _{0}}_{>_{\psi }}(\psi ^{*}_{>}, \underline{l}^{*}, \underline{\eta }^{*})&\hookrightarrow \times _{i = l}^{n-1} \langle -\zeta _{i}1/2, \ldots , -\zeta _{i}(A_{i} + 1) \rangle \times {\mathcal {C}}_{X_{n}} \rtimes \pi ^{\Sigma _{0}}_{M,>_{\psi }}(\psi , \underline{l}, \underline{\eta }) \\&\cong {\mathcal {C}}_{X_{n}} \times \times _{i = l}^{n-1} \langle -\zeta _{i}1/2, \ldots , -\zeta _{i}(A_{i} + 1) \rangle \rtimes \pi ^{\Sigma _{0}}_{M, >_{\psi }}(\psi , \underline{l}, \underline{\eta }), \end{aligned}$$

from which (B.3) follows.

We still need to show the claim (B.4). Let \(\psi ^{(n)}\) be obtained from \(\psi ^{(n)}_{>}\) by moving \((\rho , A_{n} + 1 + T_{n}, 1/2 + T_{n}, -\zeta _{n})\) back to \((\rho , A_{n} + 1, 1/2, -\zeta _{n})\). Suppose \(\pi ^{\Sigma _{0}}_{M, >_{\psi }}(\psi ^{(n)}, \underline{l}^{(n)}, \underline{\eta }^{(n)}) \ne 0\), then

$$\begin{aligned} \pi ^{\Sigma _{0}}_{M,>_{\psi }}(\psi ^{(n)}_{>}, \underline{l}^{(n)}, \underline{\eta }^{(n)}) \hookrightarrow \begin{pmatrix} -\zeta _{n}(1/2 + T_{n}) &{} \cdots &{} -\zeta _{n}3/2 \\ \vdots &{} &{} \vdots \\ -\zeta _{n}(A_{n} + 1 + T_{n}) &{} \cdots &{} -\zeta _{n}(A_{n} + 2) \end{pmatrix} \rtimes \pi ^{\Sigma _{0}}_{M, >_{\psi }}(\psi ^{(n)}, \underline{l}^{(n)}, \underline{\eta }^{(n)}). \end{aligned}$$
(B.5)

To show the nonvanishing of \(\pi ^{\Sigma _{0}}_{M, >_{\psi }}(\psi ^{(n)}, \underline{l}^{(n)}, \underline{\eta }^{(n)})\), we need to switch to a new order \(>'_{\psi }\) by moving \((\rho , A_{n} + 1, 1/2, -\zeta _{n})\) to the last position. Then

$$\begin{aligned} \pi ^{\Sigma _{0}}_{M,>_{\psi }}(\psi ^{(n)}, \underline{l}^{(n)}, \underline{\eta }^{(n)}) = \pi ^{\Sigma _{0}}_{M, >'_{\psi }}(\psi ^{(n)}, \underline{l}^{'(n)}, \underline{\eta }^{'(n)}), \end{aligned}$$

where

$$\begin{aligned} l^{'(n)}_{i} = l_{i}^{(n)}, \quad \eta ^{'(n)}_{i} = \eta ^{(n)}_{i} \quad \text { for } i > n, \end{aligned}$$

and

$$\begin{aligned} l^{'(n)}_{i} = l_{i}^{(n)}, \quad \eta ^{'(n)}_{i} = (-1)^{A_{n} - 1/2}\eta ^{(n)}_{i} \quad \text { for } i < n, \end{aligned}$$

and

$$\begin{aligned} l^{'(n)}_{n} = l^{*}_{1}, \quad \eta ^{'(n)}_{n} = \eta ^{*}_{1}. \end{aligned}$$

Let \(\psi ^{(n)}_{\gg }\) be a dominating parameter for \(\psi ^{(n)}\) with respect to \(>'_{\psi }\), obtained by changing \((\rho , A_{i}, B_{i}, \zeta _{i})\) to \((\rho , A_{i} + T_{i}, B_{i} + T_{i}, \zeta _{i})\) for \(i < n\). We also require that \(\psi ^{(n)}_{\gg }\) has discrete diagonal restriction. Then by [10, Proposition 7.6],

$$\begin{aligned} \pi ^{\Sigma _{0}}_{M,>'_{\psi }}(\psi ^{(n)}_{\gg }, \underline{l}^{'(n)}, \underline{\eta }^{'(n)}) \hookrightarrow \langle -\zeta _{n}1/2, \ldots , -\zeta _{n}(A_{n} + 1) \rangle \rtimes \pi ^{\Sigma _{0}}_{M, >'_{\psi }}(\psi _{\gg }, \underline{l}', \underline{\eta }'), \end{aligned}$$

where \(\psi _{\gg }\) is obtained from \(\psi ^{(n)}_{\gg }\) by changing \((\rho , A_{n} + 1, 1/2, -\zeta _{n})\) back to \((\rho , A_{n}, 1/2, \zeta _{n})\). Note

$$\begin{aligned} l'_{i} = l^{'(n)}_{i}, \quad \eta '_{i} = \eta ^{'(n)}_{i} \quad \text { for } i \ne n, \end{aligned}$$

and

$$\begin{aligned} l'_{n} = l_{1}, \quad \eta '_{n} = \eta _{1}. \end{aligned}$$

It is easy to check by the change of order formula that

$$\begin{aligned} \pi ^{\Sigma _{0}}_{M,>_{\psi }}(\psi , \underline{l}, \underline{\eta }) = \pi ^{\Sigma _{0}}_{M, >'_{\psi }}(\psi , \underline{l}', \underline{\eta }'). \end{aligned}$$

In particular, the right hand side is nonzero. Therefore,

$$\begin{aligned} \pi ^{\Sigma _{0}}_{M,>'_{\psi }}(\psi _{\gg }, \underline{l}', \underline{\eta }') \hookrightarrow \times _{i = 1}^{n-1} \begin{pmatrix} \zeta _{i}(1/2 + T_{i}) &{} \cdots &{} \zeta _{i}3/2 \\ \vdots &{} &{} \vdots \\ \zeta _{i}(A_{i} + T_{i}) &{} \cdots &{} \zeta _{i}(A_{i} + 1) \end{pmatrix} \rtimes \pi ^{\Sigma _{0}}_{M, >'_{\psi }}(\psi , \underline{l}', \underline{\eta }') \end{aligned}$$

Combined with the previous inclusion, we get

$$\begin{aligned} \pi ^{\Sigma _{0}}_{M,>'_{\psi }}(\psi ^{(n)}_{\gg }, \underline{l}^{'(n)}, \underline{\eta }^{'(n)})&\hookrightarrow \langle -\zeta _{n}1/2, \ldots , -\zeta _{n}(A_{n} + 1) \rangle \times \\&\times _{i = 1}^{n-1} \begin{pmatrix} \zeta _{i}(1/2 + T_{i}) &{} \cdots &{} \zeta _{i}3/2 \\ \vdots &{} &{} \vdots \\ \zeta _{i}(A_{i} + T_{i}) &{} \cdots &{} \zeta _{i}(A_{i} + 1) \end{pmatrix} \rtimes \pi ^{\Sigma _{0}}_{M,>'_{\psi }}(\psi , \underline{l}', \underline{\eta }') \\&\cong \times _{i = 1}^{n-1} \begin{pmatrix} \zeta _{i}(1/2 + T_{i}) &{} \cdots &{} \zeta _{i}3/2 \\ \vdots &{} &{} \vdots \\ \zeta _{i}(A_{i} + T_{i}) &{} \cdots &{} \zeta _{i}(A_{i} + 1) \end{pmatrix} \\&\times \langle -\zeta _{n}1/2, \ldots , -\zeta _{n}(A_{n} + 1) \rangle \rtimes \pi ^{\Sigma _{0}}_{M, >'_{\psi }}(\psi , \underline{l}', \underline{\eta }') \end{aligned}$$

Consequently, \(\pi ^{\Sigma _{0}}_{M, >'_{\psi }}(\psi ^{(n)}, \underline{l}^{'(n)}, \underline{\eta }^{'(n)}) \ne 0\) and

$$\begin{aligned} \pi ^{\Sigma _{0}}_{M,>'_{\psi }}(\psi ^{(n)}, \underline{l}^{'(n)}, \underline{\eta }^{'(n)}) \hookrightarrow \langle -\zeta _{n}1/2, \ldots , -\zeta _{n}(A_{n} + 1) \rangle \rtimes \pi ^{\Sigma _{0}}_{M, >'_{\psi }}(\psi , \underline{l}', \underline{\eta }'). \end{aligned}$$

Substitute the above expression into (B.5), we obtain

$$\begin{aligned} \pi ^{\Sigma _{0}}_{M,>_{\psi }}(\psi ^{(n)}_{>}, \underline{l}^{(n)}, \underline{\eta }^{(n)})&\hookrightarrow \begin{pmatrix} -\zeta _{n}(1/2 + T_{n}) &{} \cdots &{} -\zeta _{n}3/2 \\ \vdots &{} &{} \vdots \\ -\zeta _{n}(A_{n} + 1 + T_{n}) &{} \cdots &{} -\zeta _{n}(A_{n} + 2) \end{pmatrix} \\&\times \langle -\zeta _{n}1/2, \ldots , -\zeta _{n}(A_{n} + 1) \rangle \rtimes \pi ^{\Sigma _{0}}_{M, >_{\psi }}(\psi , \underline{l}, \underline{\eta }). \end{aligned}$$

Note the Jordan blocks in \(Jord_{\rho }(\psi )\) satisfies \(A_{i} < A_{n} + 1\) for \(i \leqslant n\), and \(B_{i} > A_{n} + 1 + T_{n}\) for \(i > n\). If we apply \(\text {Jac}_{X_{n}}\) to the right hand side of the above expression, we can only get \(\pi ^{\Sigma _{0}}_{M, >_{\psi }}(\psi , \underline{l}, \underline{\eta })\). This means the left hand side is the unique irreducible subrepresentation of the right hand side. Therefore,

$$\begin{aligned} \pi ^{\Sigma _{0}}_{M,>_{\psi }}(\psi ^{(n)}_{>}, \underline{l}^{(n)}, \underline{\eta }^{(n)}) \hookrightarrow {\mathcal {C}}_{X_{n}} \rtimes \pi ^{\Sigma _{0}}_{M, >_{\psi }}(\psi , \underline{l}, \underline{\eta }), \end{aligned}$$

which is exactly (B.4). This finishes our proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B. Nonarchimedean components of non-endoscopic automorphic representations for quasisplit Sp(N) and O(N). Math. Z. 297, 885–921 (2021). https://doi.org/10.1007/s00209-020-02539-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02539-z

Keywords

Mathematics Subject Classification

Navigation