Skip to main content

Advertisement

Log in

Thermodynamic Investigation of the Hydrolysis Behavior of Fluorozirconate Complexes at 423.15–773.15 K and 100 MPa

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Metal complexes are thermally unstable in hydrothermal solutions, which may cause metal cation inertness or precipitation. We investigated, for the first time, the hydrolysis behavior of ammonium fluorozirconate ((NH4)2ZrF6) at 423.15–773.15 K and 100 MPa. Kinetic equilibration experiments of the fluorozirconate solution demonstrated that the hydrolysis of the complex reached equilibrium within 4 h. Variable-temperature experiments showed that the complex’s hydrolysis was dependent on the temperature and initial concentration in the hydrothermal solutions, with enhanced hydrolysis at elevated temperature and decreased initial concentrations. Based on our experimental data, we established a linear relationship between the cumulative hydrolysis constants (K) of (NH4)2ZrF6 and absolute temperature T: \(\ln K = \left( {36.06 \pm 3.46} \right) - \left( {29747 \pm 1967} \right)/T,\) from which \(\Delta_{{\text{r}}} H_{{\text{m}}}^{\Theta }\), \(\Delta_{{\text{r}}} S_{{\text{m}}}^{\Theta }\) and \(\Delta_{{\text{r}}} G_{{\text{m}}}^{\Theta }\) values for the hydrolysis reaction were also calculated. This study suggests that fluorine may play an important role in Zr mobility and provide a route to quantitatively characterize the thermodynamic features of metal complexes in hydrothermal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baes, J.C.F., Mesmer, R.E.: The thermodynamics of cation hydrolysis. Am. J. Sci. 281, 935–962 (1981)

    Article  CAS  Google Scholar 

  2. Holovko, M., Druchok, M., Bryk, T.: Primitive model for cation hydrolysis: a molecular-dynamics study. J Chem. Phys. 123, 154505 (2005)

    Article  CAS  Google Scholar 

  3. Holovko, M., Druchok, M., Bryk, T.: Cation Hydrolysis Phenomenon in Aqueous Solution: Towards Understanding It by Computer Simulations. Springer, Berlin (2009)

    Google Scholar 

  4. Considine, G.D.: Zirconium. Van Nostrand's Encyclopedia of Chemistry. Wiley, New York (2005)

    Google Scholar 

  5. Gieré, R.: Zirconolite, allanite and hoegbomite in a marble skarn from the Bergell contact aureole: implications for mobility of Ti. Zr and REE. Contrib. Mineral. Petrol. 93, 459–470 (1986)

    Article  Google Scholar 

  6. Rubin, J.N., Henry, C.D., Price, J.G.: The mobility of zirconium and other “immobile” elements during hydrothermal alteration. Chem. Geol. 110, 29–47 (1993)

    Article  CAS  Google Scholar 

  7. Ryzhenko, B.N., Kovalenko, N.I., Prisyagina, N.I., Starshinova, N.P., Krupskaya, V.V.: Experimental determination of zirconium speciation in hydrothermal solutions. Geochem. Int. 46, 328–339 (2008)

    Article  Google Scholar 

  8. Migdisov, A.A., Williams-Jones, A.E., van Hinsberg, V., Salvi, S.: An experimental study of the solubility of baddeleyite (ZrO2) in fluoride-bearing solutions at elevated temperature. Geochim. Cosmochim. Acta 75, 7426–7434 (2011)

    Article  CAS  Google Scholar 

  9. Hampson, G.C., Pauling, L.: The structure of ammonium heptafluozirconate and potassium heptafluozirconate and the configuration of the heptafluozirconate group. J. Am. Chem. Soc. 60, 2702–2707 (1938)

    Article  CAS  Google Scholar 

  10. Krylov, A.S., Krylova, S.N., Laptash, N.M., Vtyurin, A.N.: Raman scattering study of temperature induced phase transitions in crystalline ammonium heptafluorozirconate, (NH4)3ZrF7. Vib. Spectrosc. 62, 258–263 (2012)

    Article  CAS  Google Scholar 

  11. Nerád, I., Mikšíková, E., Kubíková, B.: Calorimetric investigation of tripotassium zirconate heptafluoride K3ZrF7. J. Mol. Liq. 290, 111191 (2019)

    Article  Google Scholar 

  12. Griffith, W.P., Wickins, T.D.: Raman studies on species in aqueous solutions.Part II. Oxy-species of metals of Groups VIA, VA, and IVA. J. Chem. Soc. A 1967, 675–679 (1967)

    Article  Google Scholar 

  13. Zalkin, A., Eimerl, D., Velsko, S.P.: Diammonium hexafluorozirconate. Acta Crystallogr. Sect. C 44, 2050–2051 (1988)

    Article  Google Scholar 

  14. Bukvetskii, B.V., Gerasimenko, A.V., Davidovich, R.L.: Crystalline-structure of NH4ZrF5·0.75H2O and (NH4)2ZrF6 ammonium fluorozirconates. Koord. Khim. 17, 35–43 (1991)

    CAS  Google Scholar 

  15. He, J.J., Ding, X., Wang, Y.R., Sun, W.D.: The effects of precipitation-aging-re-dissolution and pressure on hydrolysis of fluorine-rich titanium complexes in hydrothermal fluids and its geological implications. Acta Petrol. Sin. 31, 1870–1878 (2015). (in Chinese with English abstract)

    CAS  Google Scholar 

  16. He, J.J., Ding, X., Wang, Y.R., Sun, W.D.: The effect of temperature and concentration on hydrolysis of fluorine-rich titanium complexes in hydrothermal fluids: Constraints on titanium mobility in deep geological processes. Acta Petrol. Sin. 31, 802–810 (2015). (in Chinese with English abstract)

    CAS  Google Scholar 

  17. Ding, X., Harlov, D.E., Chen, B., Sun, W.D.: Fluids, metals, and mineral/ore deposits. Geofluids 2018, 1–6 (2018)

    Article  Google Scholar 

  18. Mo, J.X.: Impact on chemistry reaction speed, balance and conversion ratio of temperature. Higher Educ. Forum 5, 161–164 (2004). (In Chinese with English abstract)

    Google Scholar 

  19. Wang, Y., Chou, I.M.: Characteristics of hydrolysis of the complex Na2SnF6 in hydrothermal solutions: an experimental study. Chin. J. Geochem. 6, 372–382 (1987)

    Article  Google Scholar 

  20. Wang, Y., Gu, F., Yuan, Z.: Partitioning and hydrolysis of Nb and Ta and their implications with regard to mineralization. Chin. J. Geochem. 12, 84–91 (1993)

    Article  CAS  Google Scholar 

  21. Helgeson, H.C., Kirkham, D.H., Flowers, G.C.: Am. J. Sci. 281, 1249–1516 (1981)

    Article  CAS  Google Scholar 

  22. Tanger, J.C., Helgeson, H.C.: Calculation of the thermodynamic and transport-properties of aqueous species at high-pressures and temperatures-revised equations of state for the standard partial molal properties of ions and electrolytes. Am. J. Sci. 288, 18–98 (1988)

    Article  Google Scholar 

  23. Helgeson, H.C., Kirkham, D.H.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; II, Debye-Hückel parameters for activity coefficients and relative partial molal properties. Am. J. Sci. 274, 1089–1198 (1974)

    Article  CAS  Google Scholar 

  24. Garrels, R.M., Christ, C.L.: Solutions, Minerals, and Equilibria. Harper and Row, New York (1965)

    Google Scholar 

  25. Kielland, J.: Individual activity coefficients of ions in aqueous solutions. J. Am. Chem. Soc. 59, 1675–1678 (1937)

    Article  CAS  Google Scholar 

  26. Aja, S.U., Wood, S.A., Williams-Jones, A.E.: The aqueous geochemistry of Zr and the solubility of some Zr-bearing minerals. Appl. Geochem. 10, 603–620 (1995)

    Article  CAS  Google Scholar 

  27. Mysen, B.: An in situ experimental study of Zr4+ transport capacity of water-rich fluids in the temperature and pressure range of the deep crust and upper mantle. Prog. Earth Planet. Sci. 2, 38 (2015)

    Article  Google Scholar 

  28. Schmidt, C., Rickers, K., Wirth, R., Nasdala, L.: Low-temperature Zr mobility: An in-situ synchrotron-radiation XRF study of the effect of radiation damage in zircon on the element release in H2O + HCl + SiO2 fluids. Am. Mineral. 91, 1211–1215 (2006)

    Article  CAS  Google Scholar 

  29. Newton, R.C., Manning, C.E., Hanchar, J.M., Colasanti, C.V.: Free energy of formation of zircon based on solubility measurements at high temperature and pressure. Am. Mineral. 95, 52–58 (2010)

    Article  CAS  Google Scholar 

  30. Ayers, J.C., Zhang, L., Luo, Y., Peters, T.J.: Zircon solubility in alkaline aqueous fluids at upper crustal conditions. Geochim. Cosmochim. Acta 96, 18–28 (2012)

    Article  CAS  Google Scholar 

  31. Bernini, D., Audétat, A., Dolejš, D., Keppler, H.: Zircon solubility in aqueous fluids at high temperatures and pressures. Geochim. Cosmochim. Acta 119, 178–187 (2013)

    Article  CAS  Google Scholar 

  32. Shikina, N.D., Vasina, O.N., Gurova, E.V., Popova, E.S., Tagirov, B.R., Shazzo, Y.K., Khodakovskii, I.L.: Experimental study of ZrO2(c) solubility in water and aqueous perchloric acid solutions at 150 and 250 °C. Geochem. Int. 52, 82–87 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2016YFC0600204; 2016YFC0600408), the National Natural Science Foundation of China (41773054) and the CAS Science Innovation Project for College Students. This is contribution No. IS-2874 from GIGCAS. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., He, J., Liu, X. et al. Thermodynamic Investigation of the Hydrolysis Behavior of Fluorozirconate Complexes at 423.15–773.15 K and 100 MPa. J Solution Chem 49, 836–848 (2020). https://doi.org/10.1007/s10953-020-00993-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-00993-1

Keywords

Navigation