Skip to main content
Log in

Understanding the oxophilic effect on the hydrogen electrode reaction through PtM nanostructures

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon-supported PtM nanostructured materials (M = Cr, Co, Ni, Cu, Mo, Y, Sm, Gd) were investigated for the hydrogen evolution/oxidation reactions (HER/HOR) in alkaline medium. All catalysts were synthesized by the carbonyl complex chemical route. Among PtM, Cr, Co, Ni, and Cu formed nanoalloys. M2O3 was generated with Y, Sm, and Gd, and Mo was found at a dopant concentration of Pt. The electrochemical results showed that the HER/HOR activities on PtNi/C and PtCo/C outperformed that of the Pt/C benchmark. The presence of OHads species, acting as a bifunctional mechanism, favored the HER/HOR activity on PtNi/C and PtCo/C. This process is concomitant with early DFT studies that concluded that the presence of OHads weakens the Hads and H2Oads energetics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Varcoe JR, Atanassov P, Dekel DR, Herring AM, Hickner MA, Kohl PA, Kucernak AR, Mustain WE, Nijmeijer K, Scott K, Xu T, Zhuang L (2014) Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci 7(10):3135–3191. https://doi.org/10.1039/C4EE01303D

    Article  CAS  Google Scholar 

  2. Arges CG, Zhang L (2018) Anion exchange membranes’ evolution toward high hydroxide ion conductivity and alkaline resiliency. ACS Appl Energy Mater 1(7):2991–3012. https://doi.org/10.1021/acsaem.8b00387

    Article  CAS  Google Scholar 

  3. Zhao S, Yan L, Luo H, Mustain W, Xu H (2018) Recent progress and perspectives of bifunctional oxygen reduction/evolution catalyst development for regenerative anion exchange membrane fuel cells. Nano Energy 47:172–198. https://doi.org/10.1016/j.nanoen.2018.02.015

    Article  CAS  Google Scholar 

  4. Campos-Roldán CA, Alonso-Vante N (2019) The hydrogen oxidation reaction in alkaline medium: an overview. Electrochemical Energy Reviews 2(2):312–331. https://doi.org/10.1007/s41918-019-00034-6

    Article  CAS  Google Scholar 

  5. Jia Q, Liu E, Jiao L, Li J, Mukerjee S (2018) Current understandings of the sluggish kinetics of the hydrogen evolution and oxidation reactions in base. Current Opinion in Electrochemistry 12:209–217. https://doi.org/10.1016/j.coelec.2018.11.017

    Article  CAS  Google Scholar 

  6. Zheng J, Nash J, Xu B, Yan Y (2018) Towards establishing apparent hydrogen binding energy as the descriptor for hydrogen oxidation/evolution reactions. J Electrochem Soc 165(2):H27–H29. https://doi.org/10.1149/2.0881802jes]

    Article  CAS  Google Scholar 

  7. Feng Z, Li L, Zheng X, Li J, Yang N, Ding W, Wei Z (2019) Role of hydroxyl species in hydrogen oxidation reaction: a DFT study. J Phys Chem C 123(39):23931–23939. https://doi.org/10.1021/acs.jpcc.9b04731

    Article  CAS  Google Scholar 

  8. Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, van der Vliet D, Paulikas AP, Stamenkovic VR, Markovic NM (2013) Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat Chem 5(4):300–306. https://doi.org/10.1038/nchem.1574

    Article  CAS  PubMed  Google Scholar 

  9. Scofield ME, Zhou Y, Yue S, Wang L, Su D, Tong X, Vukmirovic MB, Adzic RR, Wong SS (2016) Role of chemical composition in the enhanced catalytic activity of Pt-based alloyed ultrathin nanowires for the hydrogen oxidation reaction under alkaline conditions. ACS Catal 6(6):3895–3908. https://doi.org/10.1021/acscatal.6b00350

    Article  CAS  Google Scholar 

  10. Alia SM, Pivovar BS, Yan Y (2013) Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base. J Am Chem Soc 135(36):13473–13478. https://doi.org/10.1021/ja405598a

    Article  CAS  PubMed  Google Scholar 

  11. St. John S, Atkinson RW, Unocic RR, Zawodzinski TA, Papandrew AB (2015) Ruthenium-alloy electrocatalysts with tunable hydrogen oxidation kinetics in alkaline electrolyte. J Phys Chem C 119(24):13481–13487. https://doi.org/10.1021/acs.jpcc.5b03284

    Article  CAS  Google Scholar 

  12. Lu S, Zhuang Z (2017) Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte. J Am Chem Soc 139(4):5156–5163

    Article  CAS  Google Scholar 

  13. Okubo K, Ohyama J, Satsuma A (2019) Surface modification of Pt nanoparticles with other metals boosting the alkaline hydrogen oxidation reaction. Chem Commun 55(21):3101–3104. https://doi.org/10.1039/c9cc00582j

    Article  CAS  Google Scholar 

  14. Wang Y, Wang G, Li G, Huang B, Pan J, Liu Q, Han J, Xiao L, Lu J, Zhuang L (2015) Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy Environ Sci 8(1):177–181. https://doi.org/10.1039/c4ee02564d

    Article  CAS  Google Scholar 

  15. Huang C-P, Tsai M-C, Wang X-M, Cheng H-S, Mao Y-H, Pan C-J, Lin J-N, Tsai L-D, Chan T-S, Su W-N, Hwang B-J (2020) Engineering heterometallic bonding in bimetallic electrocatalysts: towards optimized hydrogen oxidation and evolution reactions. Catal Sci Technol 10(3):893–903. https://doi.org/10.1039/c9cy02181g

    Article  CAS  Google Scholar 

  16. Yang H, Alonso-Vante N, Leger J-M, Lamy C (2004) Tailoring, structure, and activity of carbon-supported nanosized Pt-Cr alloy electrocatalysts for oxygen reduction in pure and methanol-containing electrolytes. J Phys Chem B 108(6):1938–1947

    Article  CAS  Google Scholar 

  17. Favry E, Wang D, Fantauzzi D, Anton J, Su DS, Jacob T, Alonso-Vante N (2011) Synthesis, electrochemical characterization and molecular dynamics studies of surface segregation of platinum nano-alloy electrocatalysts. Phys Chem Chem Phys 13(20):9201–9208. https://doi.org/10.1039/c0cp02384a

    Article  CAS  PubMed  Google Scholar 

  18. Yang H, Vogel W, Lamy C, Alonso-Vante N (2004) Structure and electrocatalytic activity of carbon-supported Pt-Ni alloy nanoparticles toward the oxygen reduction reaction. J Phys Chem B 108(30):11024–11034

    Article  CAS  Google Scholar 

  19. Luo Y, Kirchhoff B, Fantauzzi D, Calvillo L, Estudillo-Wong LA, Granozzi G, Jacob T, Alonso-Vante N (2018) Molybdenum doping augments platinum-copper oxygen reduction electrocatalyst. ChemSusChem 11(1):193–201. https://doi.org/10.1002/cssc.201701822

    Article  CAS  PubMed  Google Scholar 

  20. Luo Y, Shroti N, Daletou MK, Estudillo-Wong LA, Alonso-Vante N (2016) Synergistic effect of yttrium and pyridine-functionalized carbon nanotube on platinum nanoparticles toward the oxygen reduction reaction in acid medium. J Catal 344:712–721. https://doi.org/10.1016/j.jcat.2016.09.014

    Article  CAS  Google Scholar 

  21. Luo Y, Estudillo-Wong LA, Alonso-Vante N (2016) Carbon supported Pt-Y2O3 and Pt-Gd2O3 nanoparticles prepared via carbonyl chemical route towards oxygen reduction reaction: kinetics and stability. Int J Hydrogen Energy 41(43):19601–19609. https://doi.org/10.1016/j.ijhydene.2016.02.102

    Article  CAS  Google Scholar 

  22. Alonso-Vante N (2006) Carbonyl tailored electrocatalysts. Fuel Cells 6(3–4):182–189

    Article  CAS  Google Scholar 

  23. Campos-Roldán CA, González-Huerta RG, Alonso-Vante N (2018) The oxophilic and electronic effects on anchored platinum nanoparticles on sp2 carbon sites: the hydrogen evolution and oxidation reactions in alkaline medium. Electrochim Acta 283:1829–1834. https://doi.org/10.1016/j.electacta.2018.07.104

    Article  CAS  Google Scholar 

  24. Campos-Roldán CA, Calvillo L, Granozzi G, Alonso-Vante N (2020) Alkaline hydrogen electrode and oxygen reduction reaction on PtxNi nanoalloys. J Electroanal Chem 857:113449. https://doi.org/10.1016/j.jelechem.2019.113449

    Article  CAS  Google Scholar 

  25. Campos-Roldan CA, Gonzalez-Huerta RG, Alonso-Vante N (2018) Experimental protocol for HOR and ORR in alkaline electrochemical measurements. J Electrochem Soc 165(15):J3001–J3007. https://doi.org/10.1149/2.0011815jes

    Article  CAS  Google Scholar 

  26. Chen X, McCrum IT, Schwarz KA, Janik MJ, Koper MTM (2017) Co-adsorption of cations as the cause of the apparent pH dependence of hydrogen adsorption on a stepped platinum single-crystal electrode. Angew Chem Int Ed 56(47):15025–15029. https://doi.org/10.1002/anie.201709455

    Article  CAS  Google Scholar 

  27. McCrum IT, Janik MJ (2016) pH and alkali cation effects on the Pt cyclic voltammogram explained using density functional theory. J Phys Chem C 120(1):457–471. https://doi.org/10.1021/acs.jpcc.5b10979

    Article  CAS  Google Scholar 

  28. Schmidt TJ, Ross PN, Markovic NM (2001) Temperature-dependent surface electrochemistry on Pt single crystals in alkaline electrolyte: part 1: CO oxidation. J Phys Chem B 105(48):12082–12086

    Article  CAS  Google Scholar 

  29. Skriver HL, Rosengaard NM (1992) Surface energy and work function of elemental metals. Phys Rev B Condens Matter 46(11):7157–7168. https://doi.org/10.1103/physrevb.46.7157

    Article  CAS  PubMed  Google Scholar 

  30. van der Vliet DF, Wang C, Li D, Paulikas AP, Greeley J, Rankin RB, Strmcnik D, Tripkovic D, Markovic NM, Stamenkovic VR (2012) Unique electrochemical adsorption properties of Pt-skin surfaces. Angew Chem Int Ed Engl 51(13):3139–3142. https://doi.org/10.1002/anie.201107668

    Article  CAS  PubMed  Google Scholar 

  31. Alam MK, Saito S, Takaba H (2016) Density functional theory study on the adsorption of H, OH, and CO and coadsorption of CO with H/OH on the Pt2Ru3 surfaces. J Mater Res 31(17):2617–2626. https://doi.org/10.1557/jmr.2016.286

    Article  CAS  Google Scholar 

  32. Hu J, Kuttiyiel K, Sasaki K, Zhang C, Adzic R (2018) Determination of hydrogen oxidation reaction mechanism based on Pt−Had energetics in alkaline electrolyte. J Electrochem Soc 165(15):J3355–J3362. https://doi.org/10.1149/2.0471815jes]

    Article  CAS  Google Scholar 

  33. Durst J, Siebel A, Simon C, Hasché F, Herranz J, Gasteiger HA (2014) New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ Sci 7(7):2255–2260. https://doi.org/10.1039/c4ee00440j

    Article  CAS  Google Scholar 

  34. Rheinlander PJ, Herranz J, Durst J, Gasteiger HA (2014) Kinetics of the hydrogen oxidation/evolution reaction on polycrystalline platinum in alkaline electrolyte reaction order with respect to hydrogen pressure. J Electrochem Soc 161(14):F1448–F1457. https://doi.org/10.1149/2.0501414jes]

    Article  Google Scholar 

  35. Xu W, Cheng D, Niu M, Shao X, Wang W (2012) Modification of the adsorption properties of O and OH on Pt–Ni bimetallic surfaces by subsurface alloying. Electrochim Acta 76:440–445. https://doi.org/10.1016/j.electacta.2012.05.053

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Prof. N Alonso-Vante gratefully acknowledges the contributions of his former collaborators: Dr. Y. Luo, Dr. E. Favry, and Prof. H. Yang quoted in the reference list.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Funding

The study is financially supported by the European Union (ERDF), “Région Nouvelle Aquitaine.”

Author information

Authors and Affiliations

Authors

Contributions

C.A.C.R. experiment, data analysis, and drafting; N.A.-V. organized, supervised, and reviewed the work.

Corresponding author

Correspondence to N. Alonso-Vante.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos-Roldán, C., Alonso-Vante, N. Understanding the oxophilic effect on the hydrogen electrode reaction through PtM nanostructures. J Solid State Electrochem 25, 187–194 (2021). https://doi.org/10.1007/s10008-020-04719-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04719-7

Keywords

Navigation