Skip to main content
Log in

Synthesis of mixed ionic–electronic Li+–NASICON glass-ceramic nanocomposites for cathode applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel route for preparation of mixed ionic–electronic (MIE) glass-ceramics is proposed. Glass-ceramic nanocomposites are prepared by externally dispersing MIE glass viz. [Li2O]x-[V2O5-P2O5]100 − x (where x = 10 and 20 wt% with and the ratio of V2O5 and P2O5 has been kept to 9:1 and 3:1) in the NASICON-structured LiTi2(PO4)3 (LTP) matrix using mechanical milling-assisted synthesis route. After subjecting these glass-ceramic composites to suitable sintering temperature, the samples are structurally and electrically characterized using XRD, FESEM, and impedance spectroscopy. The maximum conductivity (100 °C) is found to be 5 × 10−5 Ω−1 cm−1 for an LTP-glass-ceramic composite, which is significantly higher than that of LTP. Impedance spectroscopy, electronic conductivity, and cyclic voltammetry scans strongly suggest simultaneous transport of ions and electrons. These composites exhibit thermal stability up to ~250 °C. These mixed conductors are found to be potential candidates as electrode/cathode materials in all-solid-state Li+ ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yamada H, Takemoto K (2016) Local structure and composition change at surface of lithium-ion conducting solid electrolyte. Solid State Ionics 285:41–46

    Article  CAS  Google Scholar 

  2. Tatsumisago M, Takano R, Tadanaga K, Hayashi A (2014) Preparation of Li3BO3-Li2SO4 glass-ceramic electrolytes for all-oxide lithium batteries. J Power Sources 270:603–607

    Article  CAS  Google Scholar 

  3. Ren Y, Chen K, Chen R, Liu T, Zhang Y, Nan CW (2015) Oxide electrolytes for lithium batteries. J Am Ceram Soc 98(12):3603–3623

    Article  CAS  Google Scholar 

  4. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1990) Electrical properties of sintered lithium titanium phosphate ceramics (Li1+XMXTi2−X (PO4)3, M3+ = Al3+, Sc3+, or Y3+). Chem Lett 19(10):1825–1828

    Article  Google Scholar 

  5. Rossbach A, Tietz F, Grieshammer S (2018) Structural and transport properties of lithium-conducting NASICON materials. J Power Sources 391:1–9

    Article  CAS  Google Scholar 

  6. Bai F, Shang X, Nemori H, Zomura M, Mori D, Matsumoto M et al (2019) Lithium-ion conduction of Li1.4Al0.4Ti1.6(PO4)3-GeO2 composite solid electrolyte. Solid State Ionics 329:40–45

    Article  CAS  Google Scholar 

  7. Pérez-Estébanez M, Isasi-Marín J, Díaz-Guerra C, Rivera-Calzada A, León J, Santamaría C (2013) Influence of chromium content on the optical and electrical properties of Li1 + xCrxTi2-X (PO4)3. Solid State Ionics 241:36–45

    Article  CAS  Google Scholar 

  8. Liang Y, Peng C, Kamiike Y, Kuroda K, Okido M (2019) Gallium doped NASICON type LiTi2(PO4)3 thin-film grown on graphite anode as solid electrolyte for all solid state lithium batteries. J Alloys Compd 775:1147–1155

    Article  CAS  Google Scholar 

  9. Kwatek K, Nowiński JL (2017) Studies on electrical properties of composites based on lithium titanium phosphate with lithium iodide. Solid State Ionics 302:35–39

    Article  CAS  Google Scholar 

  10. Kobayashi Y, Tabuchi M, Nakamura O (1997) Ionic conductivity enhancement in LiTi2(PO4)3-based composite electrolyte by the addition of lithium nitrate. J Power Sources 68(2):407–411

    Article  CAS  Google Scholar 

  11. Fu J (1997) Superionic conductivity of glass ceramics in the system Li2O-Al2O3-TiO2-P2O5. Solid State Ionics 96(3-4):195–200

    Article  CAS  Google Scholar 

  12. Sharma N, Dalvi A (2018) Mechanical milling assisted synthesis of novel LiTi2(PO4)3-glass-ceramic nanocomposites. J Non-Cryst Solids 483:126–133

    Article  CAS  Google Scholar 

  13. Sharma N, Dalvi A (2019) Dispersion of Li2SO4-LiPO3 glass in LiTi2(PO4)3 matrix : assessment of enhanced electrical transport. J Alloys Compd 782:288–298

    Article  CAS  Google Scholar 

  14. Sharma N, Dalvi A (2019) Insertion of binary LiCl-P2O5 glass between Li+ NASICON crystallites and its effect on controlling inter-grain transport. Solid State Ionics 342:115082

    Article  CAS  Google Scholar 

  15. Kwatek K, Świniarski M, Nowiński JL (2018) The Li+ conducting composite based on LiTi2(PO4)3 and Li3BO3 glass. J Solid State Chem 265:381–386

    Article  CAS  Google Scholar 

  16. Sun JK, Huang FQ, Wang YM, Shan ZC, Liu ZQ, Liu ML, Xia YJ, Li KQ (2009) Characterization of NASICON-type Li3Fe2-2xTixMnx(PO4)3/C cathode materials. J Alloys Compd 469(1-2):327–331

    Article  CAS  Google Scholar 

  17. Masquelier C, Padhi AK, Nanjundaswamy KS, Goodenough JB (1998) New cathode materials for rechargeable lithium batteries: the 3-D framework structures Li3Fe2(XO4)3 (X=P, As). J Solid State Chem 135(2):228–234

    Article  CAS  Google Scholar 

  18. Goodenough JB (2012) Rechargeable batteries: challenges old and new. J Solid State Electrochem 16(6):2019–2029

    Article  CAS  Google Scholar 

  19. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0<x≤l): a new cathode material for batteries of high energy density. Mat Res Bull 15(6):783–789

    Article  CAS  Google Scholar 

  20. Morimoto H, Awano H, Terashima J, Shindo Y, Nakanishi S, Ito N, Ishikawa K, Tobishima S (2013) Preparation of lithium ion conducting solid electrolyte of NASICON-type Li1+xAlxTi2-x (PO4)3 (x = 0.3) obtained by using the mechanochemical method and its application as surface modification materials of LiCoO2 cathode for lithium cell. J Power Sources 240:636–643

    Article  CAS  Google Scholar 

  21. Goodenough JB (1983) NASICON I structure and conductvity. Solid State Ionics 9:793–794

    Article  Google Scholar 

  22. Wang H, Zhang H, Cheng Y, Feng K, Li X, Zhang H (2018) All-NASICON LVP-LTP aqueous lithium ion battery with excellent stability and low-temperature performance. Electrochim Acta 278:279–289

    Article  CAS  Google Scholar 

  23. Rathore M, Dalvi A (2013) Electrical transport in Li2SO4-Li2O-P2O5 ionic glasses and glass-ceramic composites: a comparative study. Solid State Ionics 239:50–55

    Article  CAS  Google Scholar 

  24. Tuller HL (1997) Solid state electrochemical systems—opportunities for nanofabricated or nanostructured materials. J Electroceram 3:211–218

    Article  Google Scholar 

  25. Barczyński RJ, Król P, Murawski L (2010) Ac and dc conductivities in V2O5-P2O5 glasses containing alkaline ions. J Non-Cryst Solids 356(37-40):1965–1967

    Article  CAS  Google Scholar 

  26. Hoppe U, Wyckoff NP, Schmitt ML, Brow RK, Schöps A, Hannon AC (2012) Structure of V2O5-P2O5 glasses by X-ray and neutron diffraction. J Non-Cryst Solids 358(2):328–336

    Article  CAS  Google Scholar 

  27. Jozwiak P, Garbarczyk JE (2005) Mixed electronic-ionic conductivity in the glasses of the Li2O-V2O5-P2O5 system. Solid State Ionics 176(25-28):2163–2166

    Article  CAS  Google Scholar 

  28. Hisam R, Yahya AK (2019) Elastic moduli, optical and electrical properties of mixed electronic-ionic 30Li2O-4MoO3-(66-x)TeO2-xV2O5 tellurite glass system. Results Phys 13:102219

    Article  Google Scholar 

  29. Kjeldsen J, Yue Y, Bragatto CB, Rodrigues ACM (2013) Electronic conductivity of vanadium-tellurite glass-ceramics. J Non-Cryst Solids 378:196–200

    Article  CAS  Google Scholar 

  30. Wang S, Ben L, Li H, Chen L (2014) Identifying Li+ ion transport properties of aluminum doped lithium titanium phosphate solid electrolyte at wide temperature range. Solid State Ionics 268:110–116

    Article  CAS  Google Scholar 

  31. Liu Y, Zhou X, Guo Y (2009) Effects of fluorine doping on the electrochemical properties of LiV3O8 cathode material. Electrochim Acta 54(11):3184–3190

    Article  CAS  Google Scholar 

  32. Pietrzak TK, Garbarczyk JE, Gorzkowsk I, Wasiucionek M, Nowinski JL, Gierlotka S, Jozwiak P (2009) Correlation between electrical properties and microstructure of nanocrystallized V2O5–P2O5 glasses. J Power Sources 194(1):73–80

    Article  CAS  Google Scholar 

  33. Jafari A, Alam MH, Dastan D, Ziakhodadadian S, Shi Z, Garmestani H, Weidenbach AS, Talu S (2019) Statistical, morphological, and corrosion behavior of PECVD derived cobalt oxide thin films. J Mater Sci Mater Electron 30:21185–21198

    Article  CAS  Google Scholar 

  34. Dastan D, Chaure NB (2014) Influence of surfactants on TiO2 nanoparticles grown by sol-gel technique. Int J Mater Mech Manuf 2:21–24. https://doi.org/10.7763/IJMMM.2014.V2.91

    Article  CAS  Google Scholar 

  35. Dastan D, Panahi SL, Chaure NB (2016) Characterization of titania thin films grown by dip-coating technique. J Mater Sci Mater Electron 27:12291–12296

    Article  CAS  Google Scholar 

  36. Dastan D (2015) Nanostructured anatase titania thin films prepared by sol-gel dip coating technique. J Atomic Mol Condensate Nano Phys 2:109–114. https://doi.org/10.26713/jamcnp.v2i2.331

    Article  Google Scholar 

  37. Yin XT, Zhou WD, Li J, Lv P, Wang Q, Wang D, Wu FY, Dastan D, Garmestani H, Shi Z, Talu S (2019) Tin dioxide nanoparticles with high sensitivity and selectivity for gas sensors at sub-ppm level of hydrogen gas detection. J Mater Sci Mater Electron 30:14687–14694

    Article  CAS  Google Scholar 

  38. Dastan D, Banpurkar A (2017) Solution processable sol–gel derived titania gate dielectric for organic field effect transistors. J Mater Sci Mater Electron 28:3851–3859

    Article  CAS  Google Scholar 

  39. Dastan D (2017) Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel. Appl Phys A Mater Sci Process 123(11):699

    Article  CAS  Google Scholar 

  40. Dastan D, Gosavi SW, Chaure NB (2015) Studies on electrical properties of hybrid polymeric gate dielectrics for field effect transistors. Macromol Symp 347(1):81–86

    Article  CAS  Google Scholar 

  41. Shchelkanova MS, Shekthman GS, Druzhinin KV, Pankratov AA, Pryakhina VI (2019) The study of lithium vanadium oxide LiV3O8 as an electrode material for all-solid-state lithium-ion batteries with solid electrolyte Li3.4Si0.4P0.6O4. Electrochim Acta 320:134570

    Article  CAS  Google Scholar 

  42. Wang Y, Lu X, Zheng C, Liu X, Chen Z, Yang W, Lin J, Huang F (2019) Chemistry design towards a stable sulfide-based superionic conductor Li4Cu8Ge3S12. Angew Chem Int Ed 58(23):7673–7677

    Article  CAS  Google Scholar 

  43. Yadav A, Dahiya MS, Narwal P, Hooda A, Agarwal A, Khasa S (2017) Electrical characterization of lithium bismuth borate glasses containing cobalt/vanadium ions. Solid State Ionics 312:21–31

    Article  CAS  Google Scholar 

  44. Slubowska W, Nowinski JL, Pietrzak TK, Garbarczyk JE, Wasiucionek M (2016) AC / DC conductivity studies of composites of glassy electronic and ionic conductors. Solid State Ionics 288:277–280

    Article  CAS  Google Scholar 

  45. Lee K, Lee J, Yoo H (2010) Reassessment of conventional polarization technique to measure partial electronic conductivity of electrolytes. Solid State Ionics 181(15-16):724–729

    Article  CAS  Google Scholar 

  46. Rathore M, Dalvi A (2014) Effect of conditional glass former variation on electrical transport in Li2O-P2O5 glassy and glass-ceramic ionic system. Solid State Ionics 263:119–124

    Article  CAS  Google Scholar 

  47. Dalvi A, Shahi K (2004) Formation of superionically conducting amorphous phase in mechanically milled AgI–Ag2O–V2O5 system. J Non-Cryst Solids 341(1-3):124–132

    Article  CAS  Google Scholar 

  48. Atif M, Idrees M, Nadeem M, Siddique M, Ashraf MW (2016) Investigation on the structural, dielectric and impedance analysis of manganese substituted cobalt ferrite i.e., Co1-xMnxFe2O4 (0.0≤ x≤0.4). RSC Adv 6:20876

    Article  CAS  Google Scholar 

  49. Vijayakumar M, Selvasekarapandian S, Nakamura K, Kanashiro T, Kesavamoorthy R (2004) Li MAS-NMR and vibrational spectroscopic investigations of LixV2O5 (x=1.0, 1.2 and 1.4). Solid State Ionics 167(1-2):41–47

    Article  CAS  Google Scholar 

  50. Sun D, Xu G, Wang H, Zeng X, Maa Y, Tang Y, Liu Y, Pan Y (2015) Multi-layered Al2O3/LixV2O5/LiV3O8 nanoflakes with superior cycling stability as cathode material for Li-ion battery. Electrochim Acta 157:211–217

    Article  CAS  Google Scholar 

  51. Yin XT, Dastan D, Wu FY, Li J (2019) Facile synthesis of SnO2/LaFeO3-xNx composite: photocatalytic activity and gas sensing performance. Nanomaterials 9(8):1163

    Article  CAS  PubMed Central  Google Scholar 

  52. Zuo H, Fu W, Fan R, Dastan D, Wang H, Shi Z (2020) Bilayer carbon nanowires/nickel cobalt hydroxides nanostructures for high-performance supercapacitors. Mater Lett 263:127217

    Article  CAS  Google Scholar 

  53. Takahashi H, Karasawa T, Sakuma T, Garbarczyk JE (2010) Electrical conduction in the vitreous and crystallized Li2O-V2O5-P2O5 system. Solid State Ionics 181(1-2):27–32

    Article  CAS  Google Scholar 

  54. Bih L, Omari ME, Ré JM, Haddad M, Boudlich D, Yacoubi A, Nadiri A (2000) Electronic and ionic conductivity of glasses inside the LiO–MoO–PO system. Solid State Ionics 132(1-2):71–85

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by DST-SERB project EMR/2015/000275, Government of India. The support is gratefully acknowledged. One of the authors, NS, would like to thank the Department of Science and Technology (DST) for research fellowship. The authors are also grateful to the central FESEM facility of Birla Institute of Technology and Science, Pilani (RJ), India. The work is also supported by DST FIST (Govt. of India) project (SR/FST/PS-I/2017/30) of Department of Physics, BITS Pilani (RJ) India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshuman Dalvi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Dalvi, A. Synthesis of mixed ionic–electronic Li+–NASICON glass-ceramic nanocomposites for cathode applications. J Solid State Electrochem 24, 1625–1638 (2020). https://doi.org/10.1007/s10008-020-04706-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04706-y

Keywords

Navigation