Skip to main content
Log in

Fluid Inclusion Characteristics of Tungsten Mineralization in the Agargaon Area of Sakoli Fold Belt, Central India

  • Mineral Deposits
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The Lower to Middle Proterozoic Sakoli fold belt in Central India forms a triangular belt with significant mineralization of strategic minerals. The Sakoli fold belt comprises metasediments, felsic and mafic volcanics with metabasalts bounded by the gneissic-migmatitic terrain. The last pulses of granitic activity in the form of quartz lenses intrude the metasediments and are associated with tungsten mineralization. The metasediments are intruded by the quartz veins and tourmaline breccias trending 60°N to 65°E and 60°S to 65°W and are parallel to the regional structural foliations. The tungsten mineralization in this area is restricted to tourmaline-quartz mica greisens and quartz veins. The NE-SW trending foliated contact zones of chlorite mica schist and porphyritic granite/gneisses have served as easy channels for the mineralizing vapours and solutions to percolate, which formed ore bearing greisens and quartz veins. This mineralization is erratic and manifested by sparse and sporadic disseminations of wolframite and scheelite associated with minor amount of molybdenite and chalcopyrite. The fluid inclusion microthermometry on mineralized quartz veins and quartz-tourmaline veins reveals the existence of a metamorphogenic aqueous- gaseous (H2O-CO2+NaCl) fluid that underwent phase separation and gave rise to gaseous (CO2) inclusion. The salinity of tungsten mineralizations varies from low to high (1.32 wt.% to 40.44 wt.% NaCl eq.). The estimated P-T range of tungsten mineralization varies from 1.2 to 2.2 kbar at 280 to 390 °C. Raman spectroscopy reveals that the fluid inclusions mainly contain H2O and CO2 with rarely H2S and CH4. Stable isotopic data reveal that the sulfur isotope fractions from the deposits δ34S ranging from +3.1‰ to +3.35‰, suggesting the deep crustal source for the sulfur, which can be further interpreted as a single (magmatic) supply of sulfur during magmatic-hydrothermal mineralization. The studies reveal the presence of chlorides such as FeCl2/MgCl2 and CaCl2, indicating the involvement of chloride complexes in transportation of tungsten to the fluid system and the evolution of the ore-forming fluids by mixing or immiscibility of high-temperature, high-salinity magmatic fluids and low-temperature, low-salinity fluids in hydrothermal system, and also representing magmatic-hydrothermal interactions contributed wolframite and scheelite with minor amount of molybdenite and chalcopyrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References Cited

  • Archer, D. G., 1992. Thermodynamic Properties of the NaCl+H2O System. II. Thermodynamic Properties of NaCl(aq), NaCl·2H2(cr), and Phase Equilibria. Journal of Physical and Chemical Reference Data, 21(4): 793–829. https://doi.org/10.1063/L555915

    Article  Google Scholar 

  • Bakker, R. J., 2003. Package FLUIDS 1. Computer Programs for Analysis of Fluid Inclusion Data and for Modelling Bulk Fluid Properties. Chemical Geology, 194(1/2/3): 3–23. https://doi.org/10.1016/s0009-2541(02)00268-1

    Article  Google Scholar 

  • Bandyopadhyay, B. K., 1992. Sedex Type Copper and Zinc Deposits in the Proterozoic Sakoli Group, Nagpur and Bhandara Districts, Central India. In: Sarkar, S. C., ed., Metallogeny Related to Tectonics of the Pro-terozoic Mobile Belts. A. A. Balkema, Rotterdam. 53–101

    Google Scholar 

  • Beaudoin, G., Taylor, B. E., Rumble, D. III, et al., 1994. Variations in the Sulfur Isotope Composition of Troilite from the Cañon Diablo Iron Meteorite. Geochimica et Cosmochimica Acta, 58(19): 4253–4255. https://doi.org/10.1016/0016-7037(94)90277-1

    Article  Google Scholar 

  • Bhoskar, K. G., 1998. Genetic Modeling in Relation to the Geochemical Parameters of Distribution of Tungsten and Associated Metals in Submarine Basic Volcanic Domain—A Case History of Ranbori-Bhaonri Prospects. Gondwana Geological Magzine, 13(2): 13–21

    Google Scholar 

  • Bhoskar, K. G., Choudhury, A., Padhi, R. N., 2004. Conceptual Modeling of Tungsten Mineralization in the Sakoli Basin, Central India. In: Rai, K. L., Patel, S. C., eds., Precambrian Crustal Evolution and Metallogenesis with Special References to Central India. Recent Researches in Geology, 17: 108–119

    Google Scholar 

  • Bhoskar, K. G., Roy, A., Saha, A. K., 2001. Crustal Evolution and Ore Genesis—The Central Indian Scenario. Geol. Surv. Ind. Spl. Pub., 64: 199–207

    Google Scholar 

  • Bodnar, R. J., 1993. Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions. Geochimica et Cosmochimica Acta, 57(3): 683–684. https://doi.org/10.1016/0016-7037(93)90378-a

    Article  Google Scholar 

  • Bodnar, R. J., 1983. A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and P-V-T-X Properties of Inclusion Fluids. Economic Geology, 78(3): 535–542. https://doi.org/10.2113/gsecongeo.78.3.535

    Article  Google Scholar 

  • Bodnar, R. J., Binns, P. R., Hall, D. L., 1989. Synthetic Fluid Inclusions-VI. Quantitative Evaluation of the Decrepitation Behaviour of Fluid Inclusions in Quartz at One Atmosphere Confining Pressure. Journal of Metamorphic Geology, 7(2): 229–242. https://doi.org/10.1111/j.1525-1314.1989.tb00586.x

    Article  Google Scholar 

  • Brown, P. E., Lamb, W. M., 1989. P-V-T Properties of Fluids in the System H2O±CO2±NaCl: New Graphical Presentations and Implications for Fluid Inclusion Studies. Geochimica et Cosmochimica Acta, 53(6): 1209–1221. https://doi.org/10.1016/0016-7037(89)90057-4

    Article  Google Scholar 

  • Chi, G. X., Lu, H. Z., 2008. Validation and Representation of Fluid Inclusion Microthermometric Data Using the Fluid Inclusion Assemblage (FIA) Concept. Acta Petrologica Sinica, 24: 1945–1953 (in Chinese with English Abstract)

    Google Scholar 

  • Collins, P. L. F., 1979. Gas Hydrates in CO2-Bearing Fluid Inclusions and the Use of Freezing Data for Estimation of Salinity. Economic Geology, 74(6): 1435–1444. https://doi.org/10.2113/gsecongeo.74.6.1435

    Article  Google Scholar 

  • de Groot, P. A., 2004. Handbook of Stable Isotope Analytical Techniques, Vol. 1. Elsevier, Amsterdam. 1234

    Google Scholar 

  • de Groot, P. A., 2009. Handbook of Stable Isotope Analytical Techniques, Vol. 2. Elsevier, Amsterdam. 1372

    Google Scholar 

  • Dekate, Y. G., 1967. Tungsten Occurrences in India and Their Genesis. Economic Geology, 62(4): 556–561. https://doi.org/10.2113/gsecongeo.62.4.556

    Article  Google Scholar 

  • Duan, Z. H., Møller, N., Weare, J. H., 1992. An Equation of State for the CH4-CO2-H2O System: II. Mixtures from 50 to 1 000 °C and 0 to 1 000 bar. Geochimica et Cosmochimica Acta, 56(7): 2619–2631. https://doi.org/10.1016/0016-7037(92)90348-m

    Article  Google Scholar 

  • Èernø, P., Blevin, P. L., Cuney, M., et al., 2005. Granite-Related Ore Deposits. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., Granite-Related Ore Deposits. MPG Books Ltd., Bodmin. 337–370

    Google Scholar 

  • Eugster, H. P., 1985. Granites and Hydrothermal Ore Deposits: A Geo-chemical Framework. Mineralogical Magazine, 49(350): 7–23. https://doi.org/10.1180/minmag.1985.049.350.02

    Article  Google Scholar 

  • Fermor, L. L., 1908. Note on Occurrence of Wolfram in the Nagpur District, Central Provinces. Rec. Geol. Sury. India, 36(4): 301–311

    Google Scholar 

  • Goldstein, R. H., 2003. Petrographic Analysis of Fluid Inclusions. In: Samson, I., Anderson, A., Marshall, D., eds., Fluid Inclusions Analysis and Interpretation, Short Course Series, Vol. 32. Mineralogical Association of Canada. 9–53

  • Goldstein, R. H., Reynolds, T. J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals. SEPM Short Course 31, Soc. Sediment. Geol. 199

  • Heinrich, C. A., 1990. The Chemistry of Hydrothermal Tin(-Tungsten) Ore Deposition. Economic Geology, 85(3): 457–481. https://doi.org/10.2113/gsecongeo.85.3.457

    Article  Google Scholar 

  • Hoefs, J., 2009. Stable Isotope Geochemistry. Springer-Verlag, Berlin. 288

    Google Scholar 

  • Jaireth, S., Heinrich, C. A., Solomon, M., 1990. Chemical Controls on Hydrothermal Tungsten Transport in Some Magmatic Systems and the Precipitation of Ferberite and Scheelite. Geol. Soc. Australia Abs., 25: 269–270

    Google Scholar 

  • Lokras, K. V., Gajbhiye, N. G., Raju, A. V., 1981. Agargaon Tungsten Deposit, Nagpur District, Maharastra. GSI Bulletin, 42: 83

    Google Scholar 

  • Lu, H. Z., Fan, H. R., Ni, P., et al., 2004. Fluid Inclusions. Science Press, Beijing. 406–419

    Google Scholar 

  • Marini, L., Chiappini, V., Cioni, R., et al., 1998. Effect of Degassing on Sulfur Contents and δ34S Values in Somma-Vesuvius Magmas. Bulletin of Volca-nology, 60(3): 187–194. https://doi.org/10.1007/s004450050226

    Article  Google Scholar 

  • Mohan, M., Bhoskar, K. G., 1990. Tungsten Metallogeny Related to Acid Magmatism in the Sakoli Group, Central India. Geol. Surv. Ind. Spl. Pub., 28: 648–657

    Google Scholar 

  • Narsimhan, D., Rao, N. K., Panchapakesan, V., et al., 1997. Tungsten Mineralisation at Khobna, Maharashtra: Fluid Inclusion Studies. J. Geol. Sco. Ind., 50: 343–346

    Google Scholar 

  • Ohmoto H., Rye, R. O., 1979. Isotopes of Sulfur and Carbon. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons, New York. 509–567

    Google Scholar 

  • Pophare, A. M., Varade, A. M., Kanojkar, D. M., et al., 2006. Ore Genetic Modeling of Tungsten Mineralisation in Kuhi-Khobana-Agargaon Belt, Nagpur District, Maharashtra. Journal of Applied Geochemistry, 8(2A): 430–440

    Google Scholar 

  • Pouchou, J. L., Pichoir, F., 1984. A New Model for Quantitative X-Ray Microanalyses, Part I: Application to the Analyses of Homogenous Samples. Recherche Aerospatiale, V(3): 13–36

    Google Scholar 

  • Raychaudhury, J. K., Das, M., 1981. Base Metal Mineralisation in the Sakoli Metamporphites in Parts of Nagpur-Bhandara Districts, Maharashtra. Geol. Sruv. Ind. Spl. Pub., 3: 227–237

    Google Scholar 

  • Roedder, E., 1984. Fluid Inclusions. Reviews in Mineralogy, 12: 644

    Google Scholar 

  • Roy, A. K., Charles Mony, P. C. D., Saha, A. K., 1994. Geology of the Sakoli Fold Belt, Nagpur, Bhandara and Gadchiroli Districts, Maharashtra, Central India. Geological Survey of India, Rep. Nagpur for the F. S. 1988–1994

  • Roy, A., Charles Mony, P. C. D., Saha, S. K., 1996. Geology of the Sakoli Fold Belt, Nagpur, Bhandara, and Gadchiroli Districts, Maharashtra, Central India. Geological Survey of India, Rep. Nagpur for the F. S. 1988–1994

  • Saha, A. K., Chattopadhyay, S., Kanhu, C. M., et al., 2001. Polymetallic Mineralisation in Sakoli Fold Belt Their Genetic Modeling Using Fluid Inclusion and Sulfur Isotope Data. Geol. Surv. Ind. Spl. Pub., 64: 307–398

    Google Scholar 

  • Seetharam, R., 1990. Ore Mineralogy of the Khobna Tungsten Prospect, Nagpur District, Maharashtra. GSI Special Publication, 28: 599–617

    Google Scholar 

  • Sengupta, K. K., 1941. Note on the Occurrence of Scheelite near Agargaon. Quart. Jour. Geol. Min. Met. Soc. Ind., 13: 179–189

    Google Scholar 

  • Shepherd, T. J., Rankin, A. H., Alderton, D. H. M., 1985. A Practical Guide to Fluid Inclusion Studies. Blackie, Glasgow, London. 239

    Google Scholar 

  • Thiery, R., Vidal, J., Dubessy, J., 1994. Phase Equilibria Modelling Applied to Fluid Inclusions: Liquid-Vapour Equilibria and Calculation of the Molar Volume in the CO2-CH4-N2 System. Geochimica et Cosmochimica Acta, 58(3): 1073–1082. https://doi.org/10.1016/0016-7037(94)90573-8

    Article  Google Scholar 

  • Touret, J. L. R., 2001. Fluids in Metamorphic Rocks. Lithos, 55(1/2/3/4): 1–25. https://doi.org/10.1016/s0024-4937(00)00036-0

    Article  Google Scholar 

  • van den Kerkhof, A. M., 1988. Phase Transitions and Molar Volumes of CO2-CH4-N2 Inclusions. Bulletin de Minéralogie, 111(3): 257–266. https://doi.org/10.3406/bulmi.1988.8046

    Article  Google Scholar 

  • Wang, X. D., Ni, P., Yuan, S. D., et al., 2012. Fluid Inclusion Studies of the Huangsha Quartz-Vein Type Tungsten Deposit, Jiangxi Province. Acta Petrologica Sinica, 28: 122–132 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, Y G., Frantz, J. D., 1987. Determination of the Homogenization Temperatures and Densities of Supercritical Fluids in the System NaCl-KCl-CaCl2-H2O Using Synthetic Fluid Inclusions. Chemical Geology, 64(3/4): 335–350. https://doi.org/10.1016/0009-2541(87)90012-x

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to express their gratitude and sincere thanks to Shri Raju from Geological Survey of India, Kolkata, Shri S. Dayanand, and Dr. Bijay Kumar Sahu from Remote Sensing and Aerial Survey, Geological Survey of India, Bangalore, for constant guidance. In addition, sincere thanks to officials of the National Centre for Excellence in Geoscience Researchand the Remote Sensing and Aerial Survey for their continuous support, motivation and encouragement to carry out this work. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1271-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish Kumar Mayachar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayachar, G.K., Ghosh, S. Fluid Inclusion Characteristics of Tungsten Mineralization in the Agargaon Area of Sakoli Fold Belt, Central India. J. Earth Sci. 31, 559–570 (2020). https://doi.org/10.1007/s12583-019-1271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-019-1271-4

Key Words

Navigation