Skip to main content
Log in

Abundance of Carbonic Fluid Inclusions in Hira-Buddini Gold Deposit, Hutti-Maski Greenstone Belt, India: Inferences from Petrography and Volume Ratio Estimation of Fluid Components

  • Mineral Deposits
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Low saline aqueous carbonic fluids are considered to be the ore forming solutions for orogenic lode gold deposits. Phase separation/fluid immiscibility of the ore fluid is quite common and is one of the major reasons for deposition of gold in these deposits. Abundant carbonic fluid inclusions have been observed in quartz grains of Hira-Buddnini Gold Deposit. Theoretical estimation indicates that more volume of H2O compared to CO2 is likely to be trapped in inclusions at different P-T conditions. Preferential loss of H2O from fluid inclusions during ductile deformation of quartz grains have been attributed as the suitable reason for abundance of carbonic fluid inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References Cited

  • Anand, R., Balakrishnan, S., Kooijman, E., et al., 2014. Neoarchean Crustal Growth by Accretionary Processes: Evidence from Combined Zircon-Titanite U-Pb Isotope Studies on Granitoid Rocks around the Hutti Greenstone Belt, Eastern Dharwar Craton, India. Journal of Asian Earth Sciences, 79: 72–85. https://doi.org/10.1016/jjseaes.2013.09.017

    Article  Google Scholar 

  • Bakker, R. J., Jansen, J. B. H., 1990. Preferential Water Leakage from Fluid Inclusions by Means of Mobile Dislocations. Nature, 345(6270): 58–60. https://doi.org/10.1038/345058a0

    Article  Google Scholar 

  • Bakker, R. J., Jansen, J. B. H., 1994. A Mechanism for Preferential H2O Leakage from Fluid Inclusions in Quartz, Based on TEM Observations. Contributions to Mineralogy and Petrology, 116(1/2): 7–20. https://doi.org/10.1007/bf00310686

    Article  Google Scholar 

  • Bodnar, R. J., 2003. Reequilibration of Fluid Inclusions. In: Samson, I., Anderson, A., Marshall, D., eds., Fluid Inclusions: Analysis and Interpretation. Mineral. Assoc. Canada, Short Course 32. Mineralogical Association of Canada, Vancouver. 213–230

    Google Scholar 

  • Chadwick, B., Vasudev, V. N., Hegde, G. V., 2000. The Dharwar Craton, Southern India, Interpreted as the Result of Late Archaean Oblique Convergence. Precambrian Research, 99(1/2): 91–111. https://doi.org/10.1016/s0301-9268(99)00055-8

    Article  Google Scholar 

  • Colvine, A. C., Fyon, J. A., Heather, K. B., et al., 1988. Archean Lode Gold Deposits in Ontario. Ontario Ministry of Northern Development and Mines, Paper 139, Sudbury. 154

  • Diamond, L. W., 2003. Systematics of H2O inclusions. In: Samson, I., Anderson, A., Marshall, D., eds., Fluid Inclusions: Analysis and Interpretation. Mineral. Assoc. Canada, Short Course 32. Mineralogical Association of Canada, Vancouver. 55–79

    Google Scholar 

  • Dijkstra, I., Schmatz, J., Post, A., et al., 2011. The Role of Fluid-Inclusion Composition on Dynamic Recrystallization in Experimentally Deformed Quartz Single Crystals. Journal of the Virtual Explorer, 38. https://doi.org/10.3809/jvirtex.2011.00281

  • Elmer, F. L., White, R. W., Powell, R., 2006. Devolatilization of Metabasic Rocks during Greenschist-Amphibolite Facies Metamorphism. Journal of Metamorphic Geology, 24(6): 497–513. https://doi.org/10.1111/j.1525-1314.2006.00650.x

    Article  Google Scholar 

  • Eilu, P. K., Mathison, C., Groves, D., et al., 1999. Atlas of Alteration Assemblages, Styles and Zoning in Orogenic Lode-Gold Deposits in a Variety of Host Rock and Metamorphic Settings. Geology Publications, UWA Extension, University of Western Australia, Perth. 50

    Google Scholar 

  • Gebre-Mariam, M., Hagemann, S. G., Groves, D. I., 1995. A Classification Scheme for Epigenetic Archaean Lode-Gold Deposits. Mineralium Deposita, 30(5): 408–410. https://doi.org/10.1007/bf00202283

    Article  Google Scholar 

  • Gill, R., 2014. Chemical Fundamentals of Geology and Environmental Geoscience. John Wiley & Son, Chichester. 261

    Google Scholar 

  • Giritharan, T. S., Rajamani, V., 1998. Geochemistry of the Metavolcanics of the Hutti-Maski Schist Belt, South India: Implications to Gold Metallogeny in the Eastern Dharwar Craton. Geological Society of India, 51(5): 583–594

    Google Scholar 

  • Goldfarb, R. J., Groves, D. I., 2015. Orogenic Gold: Common or Evolving Fluid and Metal Sources through Time. Lithos, 233: 2–26. https://doi.org/10.1016/j.lithos.2015.07.011

    Article  Google Scholar 

  • Goldfarb, R. J., Groves, D. I., Gardoll, S., 2001. Orogenic Gold and Geologic Time: A Global Synthesis. Ore Geology Reviews, 18(1/2): 1–75. https://doi.org/10.1016/s0169-1368(01)00016-6

    Article  Google Scholar 

  • Groves, D. I., Goldfarb, R. J., Robert, F., et al., 2003. Gold Deposits in Metamorphic Belts: Overview of Current Understanding, Outstanding Problems, Future Research, and Exploration Significance. Economic Geology, 98(1): 1–29. https://doi.org/10.2113/gsecongeo.98.1.1

    Google Scholar 

  • Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., et al., 1998. Orogenic Gold Deposits: A Proposed Classification in the Context of Their Crustal Distribution and Relationship to Other Gold Deposit Types. Ore Geology Reviews, 13(1/2/3/4/5): 7–27. https://doi.org/10.1016/s0169-1368(97)00012-7

    Article  Google Scholar 

  • Hall, D. L., Sterner, S. M., 1993. Preferential Water Loss from Synthetic Fluid Inclusions. Contributions to Mineralogy and Petrology, 114(4): 489–500. https://doi.org/10.1007/bf00321753

    Article  Google Scholar 

  • Hazarika, P., Pruseth, K. L., Mishra, B., 2015a. Neoarchean Greenstone Metamorphism in the Eastern Dharwar Craton, India: Constraints from Monazite U-Th-Pbtotal Ages and PT Pseudosection Calculations. The Journal of Geology, 123(5): 429–461. https://doi.org/10.1086/683334

    Article  Google Scholar 

  • Hazarika, P., Mishra, B., Pruseth, K. L., 2015b. Diverse Tourmaline Compositions from Orogenic Gold Deposits in the Hutti-Maski Greenstone Belt, India: Implications for Sources of Ore-Forming Fluids. Economic Geology, 110(2): 337–353. https://doi.org/10.2113/econgeo.110.2.337

    Article  Google Scholar 

  • Hagemann, S. G., Brown, P. E., 1996. Geobarometry in Archean Lode-Gold Deposits. European Journal of Mineralogy, 8: 5–937.. https://doi.org/10.1127/ejm/8/5/0937

    Article  Google Scholar 

  • Holland, T., Powell, R., 1991. A Compensated-Redlich-Kwong (CORK) Equation for Volumes and Fugacities of CO2 and H2O in the Range 1 bar to 50 kbar and 100–1 600 °C. Contributions to Mineralogy and Petrology, 109(2): 265–273. https://doi.org/10.1007/bf00306484

    Article  Google Scholar 

  • Jayananda, M., Peucat, J. J., Chardon, D., et al., 2013. Neoarchean Greenstone Volcanism and Continental Growth, Dharwar Craton, Southern India: Constraints from SIMS U-Pb Zircon Geochronology and Nd Isotopes. Precambrian Research, 227: 55–76. https://doi.org/10.1016/j.precamres.2012.05.002

    Article  Google Scholar 

  • Kerrich, R., 1976. Some Effects of Tectonic Recrystallisation on Fluid Inclusions in Vein Quartz. Contributions to Mineralogy and Petrology, 59(2): 195–202. https://doi.org/10.1007/bf00371308

    Article  Google Scholar 

  • Krienitz, M. S., Trumbull, R. B., Hellmann, A., et al., 2008. Hydrothermal Gold Mineralization at the Hira Buddini Gold Mine, India: Constraints on Fluid Evolution and Fluid Sources from Boron Isotopic Compositions of Tourmaline. Mineralium Deposita, 43: 4–421.. https://doi.org/10.1007/s00126-007-0172-0

    Article  Google Scholar 

  • McCuaig, T. C., Kerrich, R., 1998. P-T-t-Deformation-Fluid Characteristics of Lode Gold Deposits: Evidence from Alteration Systematics. Ore Geology Reviews, 12(6): 381–453. https://doi.org/10.1016/s0169-1368(98)80002-4

    Article  Google Scholar 

  • Michels, A., Michels, C., 1933. The Influence of Pressure on the Dielectric Constant of Carbon Dioxide up to 1 000 Atmospheres between 25 and 150 °C. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, 231(694–706): 409–434. https://doi.org/10.1098/rsta.1933.0011

    Google Scholar 

  • Mishra, B., Pal, N., 2008. Metamorphism, Fluid Flux, and Fluid Evolution Relative to Gold Mineralization in the Hutti-Maski Greenstone Belt, Eastern Dharwar Craton, India. Economic Geology, 103(4): 801–827. https://doi.org/10.2113/gsecongeo.103.4.801

    Article  Google Scholar 

  • Owona, S., Ondoa, J. M., Ekodeck, G. E., 2013. Evidence of Quartz, Feldspar and Amphibole Crystal Plastic Deformations in the Paleoproterozoic Nyong Complex Shear Zones under Amphibolite to Granulite Conditions (West Central African Fold Belt, SW Cameroon). Journal of Geography and Geology, 5(3): 186–201. https://doi.org/10.5539/jgg.v5n3p186

    Article  Google Scholar 

  • Pal, N., Mishra, B., 2002. Alteration Geochemistry and Fluid Inclusion Characteristics of the Greenstone-Hosted Gold Deposit of Hutti, Eastern Dharwar Craton, India. Mineralium Deposita, 37(8): 722–736. https://doi.org/10.1007/s00126-002-0257-8

    Article  Google Scholar 

  • Passchier, C. W., Trouw, R. A. J., 2005. Microtectonics. Springer, Heidelberg. 366

    Google Scholar 

  • Phillips, G. N., Powell, R., 2010. Formation of Gold Deposits: A Metamorphic Devolatilization Model. Journal of Metamorphic Geology, 28(6): 689–718. https://doi.org/10.1111/j.1525-1314.2010.00887.x

    Article  Google Scholar 

  • Ridley, J., Mikucki, E. J., Groves, D. I., 1996. Archean Lode-Gold Deposits: Fluid Flow and Chemical Evolution in Vertically Extensive Hydrothermal Systems. Ore Geology Reviews, 10(3/4/5/6): 279–293. https://doi.org/10.1016/0169-1368(95)00027-5

    Article  Google Scholar 

  • Ridley, J. R., Diamond, L. W., 2000. Fluid Chemistry of Orogenic Lode Gold Deposits and Implications for Genetic Models. Reviews in Economic Geology, 13: 141–162

    Google Scholar 

  • Rogers, A. J., Kolb, J., Meyer, F. M., et al., 2007. Tectono-Magmatic Evolution of the Hutti-Maski Greenstone Belt, India: Constrained Using Geochemical and Geochronological Data. Journal of Asian Earth Sciences, 31(1): 55–70. https://doi.org/10.1016/j.jseaes.2007.04.003

    Article  Google Scholar 

  • Sahoo, A. K., Krishnamurthi, R., Sangurmath, P., 2018. Nature of Ore Forming Fluids, Wallrock Alteration and P-T Conditions of Gold Mineralization at Hira-Buddini, Hutti-Maski Greenstone Belt, Dharwar Craton, India. Ore Geology Reviews, 99: 195–216. https://doi.org/10.1016/j.oregeorev.2018.06.008

    Article  Google Scholar 

  • Sahoo, A. K., Krishnamurthi, R., Sangurmath, P., 2016. Auriferous Lode of Hira-Buddini Gold Mine, Hutti-Maski Schist Belt, Dharwar Craton: Mineralogy, Alteration, Types and Mechanism of Vein Emplacement. Journal of the Geological Society of India, 88: 6–675.. https://doi.org/10.1007/s12594-016-0534-2

    Article  Google Scholar 

  • Sarma, D. S., Mcnaughton, N. J., Fletcher, I. R., et al., 2008. Timing of Gold Mineralization in the Hutti Gold Deposit, Dharwar Craton, South India. Economic Geology, 103(8): 1715–1727. https://doi.org/10.2113/gsecongeo.103.8.1715

    Article  Google Scholar 

  • Saunders, J. A., Hofstra, A. H., Goldfarb, R. J., et al., 2014. Geochemistry of Hydrothermal Gold Deposits. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry, Second Edition, 13: 383–424

    Article  Google Scholar 

  • Srikantia, S., 1995. Geology of the Hutti-Maski Greenstone Belt. In: Curtis, L. C., Radhakrishna, B. P., eds., Hutti Gold Mine into the 21st Century. Geological Society of India, Bangalore. 8–27

    Google Scholar 

  • Sterner, S. M., Hall, D. L., Keppler, H., 1995. Compositional Re-Equilibration of Fluid Inclusions in Quartz. Contributions to Mineralogy and Petrology, 119(1): 1–15. https://doi.org/10.1007/bf00310713

    Article  Google Scholar 

  • Stipp, M., Stünitz, H., Heilbronner, R., et al., 2002a. The Eastern Tonale Fault Zone: A ‘Natural Laboratory’ for Crystal Plastic Deformation of Quartz over a Temperature Range from 250 to 700 °C. Journal of Structural Geology, 24(12): 1861–1884. https://doi.org/10.1016/s0191-8141(02)00035-4

    Article  Google Scholar 

  • Stipp, M., Stünitz, H., Heilbronner, R., et al., 2002b. Dynamic Recrystallization of Quartz: Correlation between Natural and Experimental Conditions. Geological Society, London, Special Publications, 200(1): 171–190. https://doi.org/10.1144/gsl.sp.2001.200.01.11

    Article  Google Scholar 

  • Tomkins, A. G., 2010. Windows of Metamorphic Sulfur Liberation in the Crust: Implications for Gold Deposit Genesis. Geochimica et Cosmochimica Acta, 74(11): 3246–3259. https://doi.org/10.1016/j.gca.2010.03.003

    Article  Google Scholar 

  • Vityk, M. O., Bodnar, R. J., 1995. Textural Evolution of Synthetic Fluid Inclusions in Quartz during Reequilibration, with Applications to Tectonic Reconstruction. Contributions to Mineralogy and Petrology, 121(3): 309–323. https://doi.org/10.1007/bf02688246

    Article  Google Scholar 

  • Vityk, M. O., Bodnar, R. J., Doukhan, J. C., 2000. Synthetic Fluid Inclusions. XV. TEM Investigation of Plastic Flow Associated with Reequilibration of Fluid Inclusions in Natural Quartz. Contributions to Mineralogy and Petrology, 139(3): 285–297. https://doi.org/10.1007/s004100000142

    Article  Google Scholar 

  • Williams-Jones, A. E., Bowell, R. J., Migdisov, A. A., 2009. Gold in Solution. Elements, 5(5): 281–287. https://doi.org/10.2113/gselements.5.5.281

    Article  Google Scholar 

  • Witt, W. K., 1993. Lithological and Structural Controls on Gold Mineralization in the Archaean Menzies-Kambalda Area, Western Australia. Australian Journal of Earth Sciences, 40(1): 65–86. https://doi.org/10.1080/08120099308728064

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Earth Sciences, IIT Roorkee for necessary facilities for the present work. Organizing committee of Asian Current Research on Fluid Inclusions VII (ACROFI VII), IGGCAS, Beijing, are highly acknowledged for the invitation to write this paper. The help extended by authorities of M/S Hutti Gold Mines Company Limited during sample collection at Hira-Buddini Gold Deposit is highly appreciated. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1272-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajagopal Krishnamurthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamurthi, R., Sahoo, A.K., Sharma, R. et al. Abundance of Carbonic Fluid Inclusions in Hira-Buddini Gold Deposit, Hutti-Maski Greenstone Belt, India: Inferences from Petrography and Volume Ratio Estimation of Fluid Components. J. Earth Sci. 31, 492–499 (2020). https://doi.org/10.1007/s12583-019-1272-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-019-1272-3

Key Words

Navigation