Skip to main content
Log in

Porous Na3V2(PO4)3/C as cathode material for high-rate sodium-ion batteries by sacrificed template method

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

NASICON-type Na3V2(PO4)3 with a three-dimensional open framework structure has attracted wide attention, and it is regarded as one of the most promising cathode material for sodium-ion batteries. However, the low electronic conductivity restricts its charge–discharge capacity and electrochemical performance. With the purpose to solve this problem, polystyrene microspheres are applied in the preparation of cathode materials for sodium-ion batteries. Particular porous-structured Na3V2(PO4)3 composing of interlaced nanosheets is obtained samples by a simple hydrothermal-assisted sol–gel method via a self-sacrificed template (polystyrene microsphere). As expected, the as-prepared porous sample delivers a reversible capacity of 109.2 mAh g−1 at 0.2 C, an excellent rate performance (89.6 mAh g−1 at 50 C) and superior cyclic stability (retention of 94% over 500 cycles at 50 C). The outstanding rate and cyclic performance are attributed to its unique porous structure which is conducive to improve electron conductivity and facilitate the diffusion of sodium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cheng F, Liang J, Tao Z, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715

    Article  CAS  Google Scholar 

  2. Cao X, Mo L, Zhu L, Xie L (2017) Preparation and electrochemical properties of Li3V2(PO4)3-xBrx/carbon composites as cathode materials for lithium-ion batteries. Nanomaterials. 7:52–64

    Article  Google Scholar 

  3. Hou H, Banks C, Jing M, Zhang Y, Ji X (2015) Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life. Adv Mater 27:7861–7866

    Article  CAS  Google Scholar 

  4. Chen S, Wu C, Shen L, Zhu C, Huang Y, Xi K, Maier J, Yu Y (2017) Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv Mater 29:1700431–1700451

    Article  Google Scholar 

  5. Pan H, Hu YS, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360

    Article  CAS  Google Scholar 

  6. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682

    Article  CAS  Google Scholar 

  7. Zheng Q, Li X, Zhang H, Feng K, Zhang H (2016) Facile construction of nanoscale laminated Na3V2(PO4)3 for high-performance sodium ion battery cathode. J Mater Chem A 4:19170–19178

    Article  CAS  Google Scholar 

  8. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero GJ, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901

    Article  CAS  Google Scholar 

  9. Berthelot R, Carlier D, Delmas C (2010) Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat Mater 10:74–80

    Article  Google Scholar 

  10. Billaud J, Clement RJ, Armstrong AR, Canales VJ, Rozier P, Grey CP, Bruce PG (2014) β-NaMnO2: a high-performance cathode for sodium-ion batteries. J Am Chem Soc 136:17243–17248

    Article  CAS  Google Scholar 

  11. Yu H, So YG, Kuwabara A, Tochigi E, Shibata N, Kudo T, Ikuhara Y (2016) Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide. Nano Lett 16:2907–2915

    Article  CAS  Google Scholar 

  12. Gao X, Jiang F, Yang Y, Zhang Y, Zou G, Hou H, Hu Y, Sun W, Ji X (2020) Chalcopyrite-derived NaxMO2 (M = Cu, Fe, Mn) Cathode: tuning impurities for self-doping. ACS Appl Surf Sci 12:2432–2444

    CAS  Google Scholar 

  13. Choi H, Kim MH, Kouh T, Kim CS (2018) Synthesis and magnetic properties of antiferromagnetic maricite-NaFePO4 by mössbauer spectroscopy. Sci Adv Mater 10:682–685

    Article  CAS  Google Scholar 

  14. Chang X, Zhu Q, Sun N, Guan Y, Wang R, Zhao J, Xu B (2018) Graphene-bound Na3V2(PO4)3 film electrode with excellent cycle and rate performance for Na-ion batteries. Electrochim Acta 269:282–290

    Article  CAS  Google Scholar 

  15. Mahmoud A, Caes S, Brisbois M, Hermann RP, Berardo L, Schrijnemakers A, Boschini F (2018) Spray-drying as a tool to disperse conductive carbon inside Na2FePO4F particles by addition of carbon black or carbon nanotubes to the precursor solution. J Solid State Electrochem 22:103–112

    Article  CAS  Google Scholar 

  16. Melot BC, Rousse G, Chotard JN, Ati M, Rodriguez CJ, Kemei MC, Tarascon JM (2011) Magnetic structure and properties of the Li-ion battery materials FeSO4F and LiFeSO4F. Chem Mater 23:2922–2930

    Article  CAS  Google Scholar 

  17. Song W, Ji X, Pan C, Zhu Y, Chen Q, Banks CE (2013) A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries. Phys Chem Chem Phys 15:14357–14363

    Article  CAS  Google Scholar 

  18. Lim SY, Kim H, Shakoor RA, Jung Y, Choi JW (2012) Electrochemical and thermal properties of NASICON structured Na3V2(PO4)3 as a sodium rechargeable battery cathode: a combined experimental and theoretical study. J Electrochem Soc 159:A1393–A1397

    Article  CAS  Google Scholar 

  19. Song W, Ji X, Wu Z, Zhu Y, Yang Y, Chen J, Banks CE (2014) First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. J Mater Chem A 2:5358–5362

    Article  CAS  Google Scholar 

  20. Ren W, Zheng Z, Xu C, Niu C, Wei Q, An Q, Mai L (2016) Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries. Nano Energy 25:145–153

    Article  CAS  Google Scholar 

  21. Li F, Zhu YE, Sheng J, Yang L, Zhang Y, Zhou Z (2017) GO-induced preparation of flake-shaped Na3V2(PO4)3@rGO as high-rate and long-life cathodes for sodium-ion batteries. J Mater Chem A 5:25276–25281

    Article  CAS  Google Scholar 

  22. Zheng Q, Ni X, Lin L, Yi H, Han X, Li X, Zhang H (2018) Towards enhanced sodium storage by investigation of the Li ion doping and rearrangement mechanism in Na3V2(PO4)3 for sodium ion batteries. J Mater Chem A 6:4209–4218

    Article  CAS  Google Scholar 

  23. Duan W, Zhu Z, Li H, Hu Z, Zhang K, Cheng F, Chen J (2014) Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries. J Mater Chem A 2:8668–8675

    Article  CAS  Google Scholar 

  24. Xu L, Li J, Li Y, Cai P, Liu C, Zou G, Hou H, Huang L, Ji X (2020) Nitrogen-doped carbon coated na 3 v 2 (po 4 ) 3 with superior sodium storage capability. Chem Res Chin Univ:1–8

  25. Ni Q, Bai Y, Li Y, Ling L, Li L, Chen G, Wu C (2018) 3D Electronic channels wrapped large-sized Na3V2(PO4)3 as flexible electrode for sodium-ion batteries. Small. 14:1702864

    Article  Google Scholar 

  26. Lu J, Tang Z, Zhang Z, Shen W (2005) Structural and electrochemical properties of multihollow LiFePO4 for lithium battery cathodes. J Electrochem Soc 152:A1441–A1444

    Article  CAS  Google Scholar 

  27. Zhao Y, Cao X, Fang G, Wang Y, Yang H, Liang S, Cao G (2018) Hierarchically carbon-coated Na3V2(PO4)3 nanoflakes for high-rate capability and ultralong cycle-life sodium ion batteries. Chem Eng J 339:162–169

    Article  CAS  Google Scholar 

  28. Lee S, Cho J (2015) Critical requirements for rapid charging of rechargeable Al-and Li-ion batteries. Angew Chem Int Ed 54:9452–9455

    Article  CAS  Google Scholar 

  29. Yuan W, Zhang Y, Cheng L, Wu H, Zheng L, Zhao D (2016) The applications of carbon nanotubes and graphene in advanced rechargeable lithium batteries. J Mater Chem A 4:8932–8951

    Article  CAS  Google Scholar 

  30. Saravanan K, Mason CW, Rudola A, Wong KH, Balaya P (2013) The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv Energy Mater 3:444–450

    Article  CAS  Google Scholar 

  31. Jiang Y, Yang Z, Li W, Zeng L, Pan F, Wang M, Yu Y (2015) Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Adv Energy Mater 5:1402104–1402111

    Article  Google Scholar 

  32. Luo SH, Li JY, Bao S, Liu YY, Wang Z (2018) Na3V2(PO4)3/C composite prepared by sol-gel method as cathode for sodium ion batteries. J Electrochem Soc 165:A1460–A1465

    Article  CAS  Google Scholar 

  33. Du K, Guo H, Hu G, Peng Z, Cao Y (2013) Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries. J Power Sources 223:284–288

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No.51774177, 51674068, 51874079, 51771046, 51774002), Natural Science Foundation of Hebei Province (No.E2018501091), The Training Foundation for Scientific Research of Talents Project, Hebei Province (No.A2016005004), The Fundamental Research Funds for the Central Universities (No. N172302001, N182312007, N182306001), and Hebei Province key research and development plan project (No.19211302D).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shao-hua Luo or Jin-lin Lu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, S., Huang, Yy., Luo, Sh. et al. Porous Na3V2(PO4)3/C as cathode material for high-rate sodium-ion batteries by sacrificed template method. Ionics 26, 5011–5018 (2020). https://doi.org/10.1007/s11581-020-03635-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03635-0

Keywords

Navigation