Skip to main content
Log in

Mesoporous spheres of Dy2NiMnO6 synthesized via hydrothermal route for structural, morphological, and electrochemical investigation

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Here, we report the synthesis of the double perovskite-mesoporous spheres of Dy2NiMnO6 via hydrothermal process exhibiting P21/n monoclinic symmetry. Field emission electron micrographs confirmed the formation of porous spheres. The elemental mapping exhibited the homogenous distribution of metal ions, i.e., Dy3+, Ni2+, and Mn3+/Mn4+ as observed via X-ray photoelectron spectroscopy. The Dy2NiMnO6 spheres exhibited a specific surface area of ~ 38 m2/g, with an average pore diameter of ~ 10 nm. The specific capacitance for mesoporous spheres of Dy2NiMnO6 has been found to be ~ 395.2 F/g at the scan rate of 0.5 A/g. Furthermore, mesoporous spheres of Dy2NiMnO6 displayed stability over 2500 cycles with 71% specific capacitance retention at constant current destiny of 3 A/g.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nassir M, Kumar S, Patra N, Bhattacharya D, Jha SN, Basaula DR, Bhatt S, Khan M, Liu SW, Biring S, Sen S (2019) Role of antisite disorder, rare-earth size, and superexchange angle on band gap, curie temperature, and magnetization of R2NiMnO6 double perovskites. ACS Appl Electron Mater 1(1):141–153. https://doi.org/10.1021/acsaelm.8b00062

    Article  CAS  Google Scholar 

  2. Chanda S, Saha S, Dutta A, Sinha TP (2015) Structural and transport properties of double perovskite Dy2NiMnO6. Mater Res Bull 62:153–160. https://doi.org/10.1016/j.materresbull.2014.11.021

    Article  CAS  Google Scholar 

  3. Prokhnenko O, Feyerherm R, Dudzik E, Landsgesell S, Aliouane N, Chapon LC, Argyriou DN (2007) Enhanced ferroelectric polarization by induced Dy spin order in multiferroic DyMnO3. Phys Rev Lett 98:057206. https://doi.org/10.1103/PhysRevLett.98.057206

    Article  CAS  PubMed  Google Scholar 

  4. Lu C, Dong S, Xia Z, Luo H, Yan Z, Wang H, Tian Z, Yuan S, Wu T, Liu J (2013) Polarization enhancement and ferroelectric switching enabled by interacting magnetic structures in DyMnO3 thin films. Sci Rep 3:3374. https://doi.org/10.1038/srep03374

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alonso JA, Martinez-Lope MJ, Demazeau G, Fernandez-Diaz MT, Presniakov IA, Rusakov VS, Gubaidulina TV, Sobolev AV (2008) On the evolution of the DyNiO3 perovskite across the metal–insulator transition though neutron diffraction and Mössbauer spectroscopy studies. Dalton Trans 6584:6584–6592. https://doi.org/10.1039/B808485H

    Article  Google Scholar 

  6. Masud MG, Dey K, Ghosh A, Majumdar S, Giri S (2015) Occurrence of magnetoelectric effect correlated to the Dy order in Dy2NiMnO6 double perovskite. J Appl Phys 118(6):064104. https://doi.org/10.1063/1.4928467

    Article  CAS  Google Scholar 

  7. Cai X, Shi L, Guo Y, Zhou S, Zhao J, Liu W, Li Y (2015) Short-range magnetic ordered state above T C in double perovskite Dy2NiMnO6. J Supercond Nov Magn 28(1):53–59. https://doi.org/10.1007/s10948-014-2873-9

    Article  CAS  Google Scholar 

  8. Das R, Choudhary RN (2018) Studies of structural, dielectric relaxation and impedance spectroscopy of lead-free double perovskite: Dy2NiMnO6. J Mater Sci Mater Electron 29(22):19099. https://doi.org/10.1007/s10854-018-0036-7

    Article  CAS  Google Scholar 

  9. Ivanov SA, Andersson MS, Cedervall J, Lewin E, Sahlberg M, Bazuev GV, Nordblad P, Mathieu R (2018) Temperature-dependent structural and magnetic properties of R2MMnO6 double perovskites (R= Dy, Gd; M= Ni, Co). J Mater Sci Mater Electron 29(21):18581. https://doi.org/10.1007/s10854-018-9976-1

    Article  CAS  Google Scholar 

  10. Su L, Zhang XQ, Dong QY, Ke YJ, Hou KY, Liu CS, Cheng ZH (2018) Magnetocaloric effect and critical behaviors of R2NiMnO6 (R= Eu and Dy) double perovskite oxides. J Alloys Compd 746:594–600. https://doi.org/10.1016/j.jallcom.2018.02.327

    Article  CAS  Google Scholar 

  11. Sheikh MS, Chanda S, Dutta A, Das S, Sinha TP (2018) Schottky diode like behaviour in Ag/ Dy2NiMnO6/FTO device. Mater Today- Proc 5(3):9839–9845. https://doi.org/10.1016/j.matpr.2017.10.175

  12. Sheikh MS, Chanda S, Dey A, Dutta A, Ray PP, Sinha TP (2017) Investigation of light induced charge transport properties in Dy2NiMnO6 perovskite based Schottky diode. Ferroelectrics 518(1):204–211. https://doi.org/10.1080/00150193.2017.1360677

    Article  CAS  Google Scholar 

  13. Das R, Choudhary RN (2019) Dielectric relaxation and magneto-electric characteristics of lead-free double perovskite: Sm2NiMnO6. J Adv Ceram 8(2):174–185. https://doi.org/10.1007/s40145-018-0303-3

    Article  CAS  Google Scholar 

  14. Zheng J, Zhang Y, Wang Q, Jiang H, Liu Y, Lv T, Meng C (2018) Hydrothermal encapsulation of VO2 (A) nanorods in amorphous carbon by carbonization of glucose for energy storage devices. Dalton Trans 47(2):452–464. https://doi.org/10.1039/C7DT03853D

    Article  CAS  PubMed  Google Scholar 

  15. Cheng Y, Zhang Y, Jiang H, Dong X, Meng C, Kou Z (2020) Coupled cobalt silicate nanobelt-on-nanobelt hierarchy structure with reduced graphene oxide for enhanced supercapacitive performance. J Power Sources 448:227407. https://doi.org/10.1016/j.jpowsour.2019.227407

    Article  CAS  Google Scholar 

  16. Cheng Y, Zhang Y, Meng C (2019) Template fabrication of amorphous Co2SiO4 nanobelts/graphene oxide composites with enhanced electrochemical performances for hybrid supercapacitors. ACS Appl Energy Mater 2:3830–3839. https://doi.org/10.1021/acsaem.9b00511

    Article  CAS  Google Scholar 

  17. Ray A, Roy A, Saha S, Ghosh M, Roy Chowdhury S, Maiyalagan T, Bhattacharya SK, Das S (2019) Electrochemical energy storage properties of Ni-Mn-oxide electrodes for advance asymmetric supercapacitor application. Langmuir 35(25):7857. https://doi.org/10.1021/acs.langmuir.9b00955

    Article  CAS  Google Scholar 

  18. Wang Q, Zhang Y, Jiang H, Li X, Cheng Y, Meng C (2019) Designed mesoporous hollow sphere architecture metal (Mn, Co, Ni) silicate: a potential electrode material for flexible all solid-state asymmetric supercapacitor. Chem Eng J 362:818–829. https://doi.org/10.1016/j.cej.2019.01.102

    Article  CAS  Google Scholar 

  19. Zhang Y, Wang C, Jiang H, Wang Q, Zheng J, Meng C (2019) Cobalt-nickel silicate hydroxide on amorphous carbon derived from bamboo leaves for hybrid supercapacitors. Chem Eng J 375:121938. https://doi.org/10.1016/j.cej.2019.121938

    Article  CAS  Google Scholar 

  20. Wang Q, Zhang Y, Jiang H, Meng C (2019) In-situ grown manganese silicate from biomass-derived heteroatom-doped porous carbon for supercapacitors with high performance. J Colloid Interface Sci 534:142–155. https://doi.org/10.1016/j.jcis.2018.09.026

    Article  CAS  PubMed  Google Scholar 

  21. Kostopoulou A, Kymakis E, Stratakis E (2018) Perovskite nanostructures for photovoltaic and energy storage devices. J Mater Chem A 6(21):9765–9798. https://doi.org/10.1039/C8TA01964A

    Article  CAS  Google Scholar 

  22. Yin WJ, Weng B, Ge J, Sun Q, Li Z, Yan Y (2019) Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ Sci 12(2):442–462. https://doi.org/10.1021/10.1039/C8EE01574K

    Article  CAS  Google Scholar 

  23. Nan H, Hu XY, Tian HW (2019) Recent advances in perovskite oxides for anion-intercalation super-capacitor: a review. Mater Sci Semicond Process 94:35–50. https://doi.org/10.1016/j.mssp.2019.01.033

    Article  CAS  Google Scholar 

  24. Mefford JT, Hardin WG, Dai S, Johnston KP, Stevenson KJ (2014) Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat Mater 13:726–732. https://doi.org/10.1038/nmat4000

    Article  CAS  PubMed  Google Scholar 

  25. Lang X, Mo H, Hu X, Tian H (2017) Supercapacitor performance of perovskite La1-xSrxMnO3. Dalton Trans 46(40):13720–13730. https://doi.org/10.1039/C7DT03134C

    Article  CAS  PubMed  Google Scholar 

  26. Lv J, Zhang Y, Lv Z, Huang X, Wang Z, Zhu X, Wei B (2015) A preliminary study of the pseudo-capacitance features of strontium doped lanthanum manganite. RSC Adv 5:5858–5862. https://doi.org/10.1039/C4RA13583K

    Article  CAS  Google Scholar 

  27. Mo H, Nan H, Lang X, Liu S, Qiao L, Hu X, Tian H (2018) Influence of calcium doping on performance of LaMnO3 super-capacitors. Ceram Int 44:9733–9741. https://doi.org/10.1016/j.ceramint.2018.02.205

    Article  CAS  Google Scholar 

  28. Hussain S, Javed MS, Ullah N, Shaheen A, Aslam N, Ashraf I, Abbas Y, Wang M, Liu G, Qiao G (2019) Unique hierarchical mesoporous LaCrO3 perovskite oxides for highly efficient electrochemical energy storage applications. Ceram Int 45(12):15164–15170. https://doi.org/10.1016/j.ceramint.2019.04.258

    Article  CAS  Google Scholar 

  29. Kumar A, Kumar A, Kumar A (2020) Energy storage properties of double perovskites Gd2NiMnO6 for electrochemical supercapacitor application. Solid State Sci 106252:106252. https://doi.org/10.1016/j.solidstatesciences.2020.106252

    Article  CAS  Google Scholar 

  30. Kumar A, Kumar A (2019) Electrochemical behavior of oxygen-deficient double perovskite, Ba2FeCoO6-δ, synthesized by facile wet chemical process. Ceram Int 45:14105–14110. https://doi.org/10.1016/j.ceramint.2019.04.110

    Article  CAS  Google Scholar 

  31. Alam M, Karmakar K, Pal M, Mandal K (2016) Electrochemical supercapacitor based on double perovskite Y2NiMnO6 nanowires. RSC Adv 6(115):114722–114726. https://doi.org/10.1039/C6RA23318J

    Article  CAS  Google Scholar 

  32. Wu YB, Bi J, Wei BB (2015) Preparation and supercapacitor properties of double-perovskite La2CoNiO6 inorganic nanofibers. Acta Phys -Chim Sin 31:315–321. https://doi.org/10.3866/PKU.WHXB201412164

    Article  CAS  Google Scholar 

  33. Fu J, Zhao HY, Wang JR, Shen Y, Liu M (2018) Preparation and electrochemical performance of double perovskite La2CoMnO6 nanofibers. Int J Miner Metall Mater 25:950–956. https://doi.org/10.1007/s12613-018-1644-1

    Article  CAS  Google Scholar 

  34. Singh J, Kumar A (2019) Hydrothermal synthesis and electrochemical performance of nanostructured cobalt free La2CuMnO6. Solid State Sci 95:105927. https://doi.org/10.1016/j.solidstatesciences.2019.06.016

    Article  CAS  Google Scholar 

  35. Singh J, Kumar A (2019) Facile wet chemical synthesis and electrochemical behavior of La2FeCoO6 nano-crystallites. Mater Sci Semicond Process 99:8–13. https://doi.org/10.1016/j.mssp.2019.04.007

    Article  CAS  Google Scholar 

  36. Liu Y, Wang Z, Veder JP, Xu Z, Zhong Y, Zhou W, Tade MO, Wang S, Shao Z (2018) Highly defective layered double perovskite oxide for efficient energy storage via reversible pseudocapacitive oxygen-anion intercalation. Adv Energy Mater 8(11):1702604. https://doi.org/10.1002/aenm.201702604

    Article  CAS  Google Scholar 

  37. Xu Z, Liu Y, Zhou W, Tade MO, Shao Z (2018) B-site cation-ordered double-perovskite oxide as an outstanding electrode material for super-capacitive energy storage based on the anion intercalation mechanism. ACS Appl Mater Interfaces 10(11):9415–9423. https://doi.org/10.1021/acsami.7b19391

    Article  CAS  PubMed  Google Scholar 

  38. Bavio MA, Tasca JE, Acosta GG, Lavat AE (2018) La2NiMnO6 double perovskite nanostructure prepared by citrate route for supercapacitors. Matéria (Rio J) 23(2). https://doi.org/10.1590/s1517-707620180002.0466

  39. Wang Z, Liu Y, Chen Y, Yang L, Wang Y, Wei M (2019) A-site cation-ordered double perovskite PrBaCo2O5+ δ oxide as an anion-inserted pseudocapacitors electrode with outstanding stability. J Alloys Compd 151830:151830. https://doi.org/10.1016/j.jallcom.2019.151830

    Article  CAS  Google Scholar 

  40. Singh J, Kumar A, Goutam UK, Kumar A (2020) Microstructure and electrochemical performance of La2ZnMnO6 nanoflakes synthesized by facile hydrothermal route. Appl Phys A Mater Sci Process 126(1):11. https://doi.org/10.1007/s00339-019-3195-3

    Article  CAS  Google Scholar 

  41. Mansoorie FN, Singh J, Kumar A (2020) Wet chemical synthesis and electrochemical performance of novel double perovskite Y2CuMnO6 nanocrystallites. Mater Sci Semicond Process 107:104826. https://doi.org/10.1016/j.mssp.2019.104826

    Article  CAS  Google Scholar 

  42. Singh J, Kumar A (2020) Solvothermal synthesis dependent structural, morphological and electrochemical behaviour of mesoporous nanorods of Sm2NiMnO6. Ceram Int 46(8):11041–11048. https://doi.org/10.1016/j.ceramint.2020.01.122

    Article  CAS  Google Scholar 

  43. Singh J, Kumar A (2020) Investigation of structural, morphological, and electrochemical properties of mesoporous La2CuCoO6 rods fabricated by facile hydrothermal route. Int J Min Met Mater. https://doi.org/10.1007/s12613-020-2011-6

  44. Bavio MA, Tasca JE, Acosta GG, Ponce MF, Fuentes RO, Visintin A (2020) Study of double perovskite La2B(II)MnO6 (B: Ni, Co, Cu) as electrode materials for energy storage. J Solid State Electrochem 24(3):699–710. https://doi.org/10.1007/s10008-020-04511-7

    Article  CAS  Google Scholar 

  45. Javed MS, Shaheen N, Idrees A, Hu C, Raza R (2017) Electrochemical investigations of cobalt-free perovskite cathode material for intermediate temperature solid oxide fuel cell. Int J Hydrog Energy 42(15):10416–10422. https://doi.org/10.1016/j.ijhydene.2017.02.045

    Article  CAS  Google Scholar 

  46. Yang Q, Lu Z, Liu J, Lei X, Chang Z, Luo L, Sun X (2013) Metal oxide and hydroxide nanoarrays: hydrothermal synthesis and applications as supercapacitors and nanocatalysts. Prog Nat Sci. 23(4):351. https://doi.org/10.1016/j.pnsc.2013.06.015

  47. Piticescu RM, Vilarnho P, Popescu LM, Piticescue RR (2006) Hydrothermal synthesis of perovskite based materials for microelectronic applications. J Optoelectron Adv Mater 8(2):543

    CAS  Google Scholar 

  48. Brijesh K, Nagaraja HS (2019) Lower band gap Sb/ZnWO4/r-GO nanocomposite based supercapacitor electrodes. J Electron Mater 48(7):4188–4195. https://doi.org/10.1007/s11664-019-07185-8

    Article  CAS  Google Scholar 

  49. Wang S, Ma F, Jiang H, Shao Y, Yongzhong W, Hao X (2018) Band gap-tunable porous borocarbonitride nanosheets for high energy-density supercapacitors. ACS Appl Mater Interfaces 10:19588–19597. https://doi.org/10.1021/acsami.8b02317

    Article  CAS  PubMed  Google Scholar 

  50. Saha S, Jana M, Khanra P, Samanta P, Koo H, Murmu NC, Kuila T (2016) Band gap modified boron doped NiO/Fe3O4 nanostructure as the positive electrode for high energy asymmetric supercapacitors. RSC Adv 6:1380–1387. https://doi.org/10.1039/C5RA20928E

    Article  CAS  Google Scholar 

  51. Saha S, Jana M, Samanta P, Murmu NC, Kim NH, Kuila T, Lee JH (2017) Investigation of band structure and electrochemical properties of h-BN/rGO composites for asymmetric supercapacitor applications. Mater Chem Phys 190:153–165. https://doi.org/10.1016/j.matchemphys.2017.01.025

    Article  CAS  Google Scholar 

  52. Nath J, Goutam UK, Sharma RK, Singh J, Dutta K, Sule US, Gadkari SC (2018) HAXPES beam-line PES-BL14 at the Indus-2 synchrotron radiation source. J Synchrotron Radiat 25(5):1541–1547. https://doi.org/10.1107/S1600577518008408

    Article  Google Scholar 

  53. Jie C, Cao L, Daha Z (2018) Surface characteristic effect of Ag/TiO2 nanoarray composite structure on supercapacitor electrode properties. Scanning 2018:2464981–2464910. https://doi.org/10.1155/2018/2464981

    Article  CAS  Google Scholar 

  54. Purkait T, Singh G, Kumar D, Singh M, Dey RS (2018) High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Sci Rep 8(1):640. https://doi.org/10.1038/s41598-017-18593-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Silva MF, De Oliveira LA, Ciciliati MA, Lima MK, Ivashita FF, Fernandes de Oliveira DM, Hechenleitner AA, Pineda EA (2017) The effects and role of polyvinylpyrrolidone on the size and phase composition of Iron oxide nanoparticles prepared by a modified sol-gel method. J Nanomater 7939727:1–10. https://doi.org/10.1155/2017/7939727

    Article  CAS  Google Scholar 

  56. Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE (2015) Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 44(41):17883. https://doi.org/10.1039/C5DT02964C

    Article  CAS  PubMed  Google Scholar 

  57. Soler-Iltia GJ, Jobbagy M, Candal RJ, Regazzoni AE, Blesa MA (1998) Synthesis of metal oxide particles from aqueous media: the homogeneous alkalin1zat1on method. J Dispers Sci Technol 19(2–3):207–228. https://doi.org/10.1080/01932699808913172

    Article  Google Scholar 

  58. Soler-Illia GJ, Candal RJ, Regazzoni AE, Blesa MA (1997) Synthesis of mixed copper− zinc basic carbonates and Zn-doped tenorite by homogeneous alkalinization. Chem Mater 9(1):184–191. https://doi.org/10.1021/cm9602813

    Article  Google Scholar 

  59. Xie T, Min J, Liu J, Chen J, Fu D, Zhang R, Zhu K, Lei M (2018) Synthesis of mesoporous Co3O4 nanosheet-assembled hollow spheres towards efficient electrocatalytic oxygen evolution. J Alloys Compd 754:72–77. https://doi.org/10.1016/j.jallcom.2018.04.207

    Article  CAS  Google Scholar 

  60. Chi B, Zhao L, Jin T (2007) One-step template-free route for synthesis of mesoporous N-doped titania spheres. J Phys Chem C 111(17):6189–6193. https://doi.org/10.1021/jp067490n

    Article  CAS  Google Scholar 

  61. Mariappan CR, Kumar V, Azmi R, Esmezjan L, Indris S, Bruns M, Ehrenberg H (2018) High electrochemical performance of 3D highly porous Zn0.2Ni0.8Co2O4 microspheres as an electrode material for electrochemical energy storage. CrystEngComm 20(15):2159. https://doi.org/10.1039/C7CE02161E

  62. Barreca D, Gasparotto A, Milanov A, Tondello E, Devi A, Fischer RA (2007) Nanostructured Dy2O3 films: An XPS investigation. Surf Sci Spectra 14(1):52–59. https://doi.org/10.1116/11.20080702

  63. Brown AT, Barron KG, Salazar BG, Kirby P, McCandless GT, Walker AV, Chan JY (2017) Structure and oxidation states of giant unit cell compound Dy117+ xFe57–ySn112–z. Z Anorg Allg Chem 643(23):2038–2044. https://doi.org/10.1002/zaac.201700321

    Article  CAS  Google Scholar 

  64. Fetisov AV, Kozhina GA, Estemirova SK, Fetisov VB, Gulyaeva RI (2015) XPS study of the chemical stability of DyBa2Cu3O6+δ superconductor. Physica C 508:62–68. https://doi.org/10.1016/j.physc.2014.11.003

  65. Su J, Yang ZZ, Lu XM, Zhang JT, Gu L, Lu CJ, Li QC, Liu JM, Zhu JS (2015) Magnetism-driven ferroelectricity in double perovskite Y2NiMnO6. ACS Appl Mater Interfaces 7(24):13260–13265. https://doi.org/10.1021/acsami.5b00911

    Article  CAS  PubMed  Google Scholar 

  66. Ferrel-Álvarez AC, Domínguez-Crespo MA, Cong H, Torres-Huerta AM, Brachetti-Sibaja SB, De La CruZ W (2018) Synthesis and surface characterization of the La0.7-xPrxCa0.3MnO3 (LPCM) perovskite by a non-conventional microwave irradiation method. J Alloys Compd 735:1750. https://doi.org/10.1016/j.jallcom.2017.11.306

    Article  CAS  Google Scholar 

  67. Pana O, Soran ML, Leostean C, Macavei S, Gautron E, Teodorescu CM, Gheorghe N, Chauvet O (2012) Interface charge transfer in polypyrrole coated perovskite manganite magnetic nanoparticles. J Appl Phys 111:044309. https://doi.org/10.1063/1.3686662

    Article  CAS  Google Scholar 

  68. Li M, Liu F, Zhang XB, Cheng JP (2016) A comparative study of Ni–Mn layered double hydroxide/carbon composites with different morphologies for supercapacitors. Phys Chem Chem Phys 18(43):30068–30078. https://doi.org/10.1039/C6CP05119G

    Article  CAS  PubMed  Google Scholar 

  69. Kumar V, Mariappan CR, Azmi R, Moock D, Indris S, Bruns M, Ehrenberg H, Prakash GV (2017) Pseudo-capacitance of mesoporous spinel-type MCo2O4 (M= Co, Zn, and Ni) rods fabricated by a facile solvothermal route. ACS Omega 2(9):6003. https://doi.org/10.1021/acsomega.7b00709.M

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Javed MS, Dai S, Wang M, Guo D, Chen L, Wang X, Hu C, Xi Y (2015) High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres. J Power Sources 285:63. https://doi.org/10.1016/j.jpowsour.2015.03.079

  71. Dong C, Wang Y, Xu J, Cheng G, Yang W, Kou T, Zhang Z, Ding Y (2014) 3D binder-free Cu2O@cu nano-needle arrays for high-performance asymmetric super capacitors. J Mater Chem A 2:18229–18235. https://doi.org/10.1039/C4TA04329D

    Article  CAS  Google Scholar 

  72. Ray A, Roy A, Ghosh M, Ramos-ramón JA, Saha S (2019) Study on charge storage mechanism in working electrodes fabricated by sol- gel derived spinel NiMn2O4 nanoparticles for supercapacitor application. Appl Surf Sci 463:513–525. https://doi.org/10.1016/j.apsusc.2018.08.259

    Article  CAS  Google Scholar 

  73. Asen P, Shahrokhian S (2017) A high performance supercapacitor based on graphene/polypyrrole/Cu2O-Cu(OH)2 ternary nanocomposite coated on nickel foam. J Phys Chem C 121(12):6508–6519. https://doi.org/10.1021/acs.jpcc.7b00534

    Article  CAS  Google Scholar 

  74. Jiang H, Ma J, Li C (2012) Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. Chem Commun 48(37):4465–4467. https://doi.org/10.1039/C2CC31418E

    Article  CAS  Google Scholar 

  75. Xiang C, Li M, Zhi M, Manivannan A, Wu N (2013) A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J Power Sources 226:65–70. https://doi.org/10.1016/j.jpowsour.2012.10.064

    Article  CAS  Google Scholar 

Download references

Funding

Authors (JS/IR) thank NIT Kurukshetra/DAAD, for providing him/her research/project fellowship. Author (AK) is thankful to Council of Scientific and Industrial Research (CSIR), New Delhi (India), for financial support (F. No. 22(0778)/18/EMR-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Rogge, I., Goutam, U.K. et al. Mesoporous spheres of Dy2NiMnO6 synthesized via hydrothermal route for structural, morphological, and electrochemical investigation. Ionics 26, 5143–5153 (2020). https://doi.org/10.1007/s11581-020-03644-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03644-z

Keywords

Navigation