Skip to main content
Log in

Distribution of Trace and Rare-Earth Elements, and Nd, Pb, and Sr Isotopes in the Surface Sediments of the Barents Sea

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—The distribution of Sc, Co, Hf, Cr, Th, and rare-earth elements in samples of surface sediments collected during cruises 67th and 68th of the R/V Akademik Mstislav Keldysh in the Barents Sea and in its bays is analyzed. The results obtained suggest that the predominant part of the bottom sediments of the Barents Sea is composed of thin-grained siliciclastics that was supplied with suspended particulate matter of the North Cape (Atlantic) Current through the erosion of the northwestern Scandinavian coasts and some seafloor areas. Some sediments in the northern part of the sea were formed through the erosion of rocks of the Novaya Zemlya and Franz Josef Land. A certain role in their formation was probably played by material from Svalbard as well as by the Pechora River suspended particulate matter. The established isotopic characteristics (εNd, 207Pb/206Pb and 87Sr/86Sr) of surface sediments suggest that the main contribution to the formation of bottom sediments of the central Barents Sea was made by rocks of the mainland part affected by the North Cape Current. The comparison of the 87Sr/86Sr values ​​in the surface sediments of the central part of the Barents Sea and in the ice-rafted sediments carried by the Transpolar Drift showed their significant difference. This suggests a reatively small contribution of ice-rafted material to the formation of surface sediments of the Barents Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Data on the content of chemical elements in the average Post-Archean Australian Shale (PAAS) are taken from (Taylor, McLennan, 1985).

  2. Hereinafter, only Cruise 67 data.

  3. The average Paleozoic andesites, Mesozoic–Cenozoic basalts and Archean granites (Condie, 1993) have (La/Yb)PAAS 0.66, 0.30, and 1.85, respectively, while (Eu/Eu*)PAAS is 1.01, 1.65, and 0.74.

REFERENCES

  1. N. A. Aibulatov, V. A. Matyushenko, V. P. Shevchenko, N. V. Politova, and E. M. Potekhina, “New data on the transverse structure of lateral fluxes of suspended particulate matter along the periphery of the Barents Sea,” Geoekol., Inzh. Geol., Gidrogeol., Geocriol., No. 6, 526–540 (1999).

  2. J. Arribas, M. J. Johnsson, and S. Critelli, “Sedimentary provenance and petrogenesis: perspectives from petrography and geochemistry,” Geol. Soc. Am. Spec. Pap. 420, (2007)

  3. E. A. Chernysheva, G. S. Kharin, and N. M. Stolbov, “Basalts from the Franz Josef Land Archipelago: new geochemical data,” Dokl. Earth Sci. 390 (2), 550–553 (2003).

    Google Scholar 

  4. K. C. Condie, “Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales,” Chem. Geol. 104 (1–4), 1–37 (1993).

    Article  Google Scholar 

  5. R. L. Cullers, “Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA,” Chem. Geol. 191 (4), 305–327 (2002).

    Article  Google Scholar 

  6. V. D. Dibner, Geology of Franz Jozef Land (Norsk Polarinstitut, Oslo, 1998).

    Google Scholar 

  7. G. R. Dipre, L. Polyak, A. B. Kuznetsov, E. A. Oti, J. D. Ortiz, S. A. Brachfeld, C. Xuan, K. B. Lazar, and A. E. Cook, “Plio–Pleistocene sedimentary record from the Northwind Ridge: new insights into paleoclimatic evolution of the western Arctic Ocean for the last 5 Ma,” Arctos 4, 4–24 (2018).

    Google Scholar 

  8. Y. Dou, S. Yang, Z. Liu, P. D. Clift, X. Shi, H. Yu, and S. Berne, “Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30 ka: constraints from rare earth element compositions,” Marine Geol. 275 (1–4), 212–220 (2010).

    Article  Google Scholar 

  9. A. Elverhøi, S. L. Pfirman, A. Solheim, and B. B. Larssen, “Glaciomarine sedimentation in epicontinental seas exemplified by the northern Barents Sea,” Marine Geol. 85 (2–4), 225–250 (1989).

    Article  Google Scholar 

  10. P. A. Floyd and B. E. Leveridge, “Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones,” J. Geol. Soc. (London) 144 (4), 531–542 (1987).

    Article  Google Scholar 

  11. Geological Structure of the USSR and Distribution of Mineral Resources. Volume 9. Soviet Arctic Seas (Nedra, Leningrad, 1984) [in Russian].

  12. E. A. Gusev, A. B. Kuznetsov, E. E. Taldenkova, S. D. Nikolaev, A. Yu. Stepanova and E. S. Novikhina, “Past sedimentation rates and environments of the Mendeleev Rise inferred from Sr isotope and δ18O chemostratigraphy of its Late Cenozoic sediments,” Dokl. Earth Sci. 473 (3), 354–358 (2017).

    Article  Google Scholar 

  13. S. L. Goldstein and S. R. Hemming, “Long–lived isotopic tracers in oceanography, paleoceanography, and ice–sheet dynamics,” Treatise on geochemistry Ed. by H. D. Holland and K. K. Turekian (Pergamon, Oxfo-rd, 2003), pp. 453–489.

    Google Scholar 

  14. I. M. Gorokhov, N. N. Mel’nikov, A. B. Kuznetsov, G. V. Konstantinova, and T. L. Turchenko, Sm–Nd systematics of fine-grained fractions of the Lower Cambrian blue clay in northern Estonia,” Lithol. Mineral. Res. 42 (5), 482–495 (2007).

  15. V. I. Gurevich, Present-day Sedimentogenesis and Geoecology of the Western Arctic Shelf of Eurasia (Nauchnyi Mir, Moscow, 2002) [in Russian].

    Google Scholar 

  16. Hydrometeorology and Hydrochemistry of USSR Seas. Volume I. Barents Sea (Gidrometeoizdat, Leningrad, 1990) [in Russian].

  17. M. D. Kravchishina, A. N. Novigatskii, A. S. Savvichev, L. A. Pautova and A. P. Lisitsyn, “Studies on sedimentary systems in the Barents Sea and Norwegian–Greenland Basin during Cruise 68 of the R/V Akademik Mstislav Keldysh,” Oceanology 59 (1), 158–160 (2019).

    Article  Google Scholar 

  18. N. M. Kudryashov and A. V. Mokrushin, “Mesoarchean gabbroanorthosite magmatism of the Kola Region: petrochemical, geochronological, and isotope-geochemical data,” Petrology 19 (2), 167–182 (2011).

    Article  Google Scholar 

  19. A. B. Kuznetsov, M. T. Krupenin, G. V. Ovchinnikova, I. M. Gorokhov, A. V. Maslov, O. K. Kaurova, and R. Ellmies, “Diagenesis of carbonate and siderite deposits of the Lower Riphean Bakal Formation, the Southern Urals: Sr isotopic characteristics and Pb–Pb age,” Lithol. Miner. Resour. 40 (3), 195–215 (2005).

    Article  Google Scholar 

  20. A. B. Kuznetsov, M. A. Semikhatov and I. M. Gorokhov, “Strontium isotope stratigraphy: principles and state of the art,” Stratigraphy. Geol. Correlation 26 (4), 367–386 (2018).

    Article  Google Scholar 

  21. D. R. Lentz, “Geochemistry of sediments and sedimentary rocks: evolutionary considerations to mineral deposit–forming environments,” Geol. Ass. Canada. GeoText 4, (2003).

  22. M. A. Levitan and Yu. A. Lavrushin, Sedimentation History in the Arctic Ocean and Subarctic Seas for the Last 130 kyr (Springer, Heidelberg, 2009).

    Book  Google Scholar 

  23. A. P. Lisitsyn, “Unsolved problems of the Arctic oceanology,” Experience in Systematic Oceanological Studies in Arctic, (Nauchnyi Mir, Moscow, 2001), pp. 31–75.

    Google Scholar 

  24. J. Maccali, C. Hillaire–Marcel, and C. Not, “Radiogenic isotope (Nd, Pb, Sr) signatures of surface and sea ice–transported sediments from the Arctic Ocean under the present interglacial conditions,” Polar Res. 37 (2018). 1442982. https://doi.org/10.1080/17518369.2018.1442982

    Article  Google Scholar 

  25. A. V. Maslov, V. P. Shevchenko, V. N. Podkovyrov, Yu. L. Ronkin, O. P. Lepikhina, A. N. Novigatsky, A. S. Filippov, and N. V. Shevchenko, “Specific features of the distribution of trace and rare earth elements in recent bottom sediments in the lower course of the Severnaya Dvina River and White Sea,” Lithol. Miner. Resour. 49 (6), 433–460 (2014).

    Article  Google Scholar 

  26. A. V. Maslov, V. P. Shevchenko, A. B. Kuznetsov, and R. Stein “Geochemical and Sr–Nd–Pb–isotope characteristics of ice–rafted sediments of the Arctic Ocean,” Geochem. Int. 56 (8), 751–765 (2018a).

    Article  Google Scholar 

  27. A. V. Maslov, V. P. Shevchenko, A. B. Kuznetsov, R. Stein, and S. Gerland, “Isotopic and geochemical characteristics of Western Arctic ice-rafted sediments,” Dokl. Earth Sci. 479 (2), 534–538 (2018b).

    Article  Google Scholar 

  28. S. M. McLennan, S. R. Hemming, D. K. McDaniel, and G. N. Hanson, “Geochemical approaches to sedimentation, provenance and tectonics,” Processes Controlling the Composition of Clastic Sediments, Ed. by M. J. Johnsson and A. Basu, Geol. Soc. Am. Spec. Pap. 284, 21–40 (1993).

  29. M. V. Mints, V. N. Glaznev, A. N. Konilov, N. M. Kunina, A. P. Nikitichev, A. V. Raevskii, Yu. N. Sedykh, V. M. Syupak, and V. I. Fonarev, Early Precambrian of the Eastern Baltic Shield: Paleogeodynamics, Structure, and Evolution of Continental Crust (Nauchnyi Mir, Moscow, 199) [in Russian].

  30. F. P. Mitrofanov, Geological Map of the Kola Region. Scale 1 : 500000. (MPR Rossi, GI KNTS RAN, Apatite, 2001) [in Russian].

  31. T. A. Myskova and R. I. Mil’kevich, “Aluminous gneisses of the Baltic Shield (Geochemistry, Nature, and Age of Protolith),” Tr. Karel’sk. Nauchn. Ts. RAN. Ser. Geol. Dokembriya, No. 10, 1–29 (2016).

    Google Scholar 

  32. G. V. Ovchinnikova, A. B. Kuznetsov, V. A. Melezhik, I. M. Gorokhov, I. M. Vasil’eva, and B. M. Gorokhovskii, “Pb–Pb age of Jatulian carbonate rocks: the Tulomozero Formation of Southeast Karelia,” Stratigraphy. Geol. Correlation 15 (4), 359–372 (2007).

    Article  Google Scholar 

  33. V. P. Petelin, “New method of aqueous—mechanical analysis of marine sediments,” Okeanologiya 1 (1), 144–148 (1961).

    Google Scholar 

  34. N. V. Politova, A. N. Novigatsky, N. V. Kozina and S. A. Terpugova, “Multidisciplinary research in the Barents Sea on Cruise 67 of the R/V Akademik Mstislav Keldysh,” Oceanology 58 (3), 499–501 (2018).

    Article  Google Scholar 

  35. V. P. Shevchenko, A. A. Vinogradova, G. I. Ivanov, A. P. Lisitsyn, and V. V. Serova, “The distribution and composition of aerosols in the Western Arctic,” Dokl. Earth Sci. 355A (6), 912–915 (1997).

    Google Scholar 

  36. A. Siedlecka, E. Iversen, A. G. Krill, B. Lieungh, M. Oftern, J. S. Sandstad, and A. Solli, “Lithostratigraphy and correlation of the Archean and Early Proterozoic rocks of Finnmarksvidda and the Sorvaranger district,” Nor. Geol. Unders. Bull. 403, 7–36 (1985).

    Google Scholar 

  37. A. N. Sirotkin, “Age, composition, and structural characteristics of metamorphic rocks of the Dove Fjord metamorphic complex, Northeastern Zemlya I., Spitsbergen Archipelago,” Regional. Geol. Metallogen. 51, 32–41(2012).

    Google Scholar 

  38. N. O. Sorokhtin, S. L. Nikiforov, S. M. Koshel, and N. E. Kozlov, “Geodynamic evolution and morphostructural analysis of the western Arctic Shelf of Russia,” Vestn. Murmansk. Gos. Tekhn. Univ., 19 (1/1), 123–137 (2016).

  39. State Geological Map of the Russian Federation. Scale 1 : 1 000 000 (Third Generation). Northern Kara—Barents Sea Series. Sheet T–41–44 – Cape Zhelaniya. Explanatory Notes (Kartfabrika VSEGEI, St. Petersburg, 2013) [in Russian].

  40. N. M. Stolbov, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (SPbGU, St. Petersburg, 2005).

  41. S. R. Taylor and S. M. McLennan, “The Continental Crust; Its composition and evolution; an Examination of the Geochemical Record Preserved in Sedimentary Rocks (Blackwell, Oxford, 1985).

    Google Scholar 

  42. V. R. Vetrin, O. M. Turkina, and O. Nordgulen, “Homologs of the “gray gneisses” among Archean rocks of the Kola Supedeep Well (experience of petrological-geochemical modeling of the composition of lower crust and conditions of formation of tonalite—trndhjemite—rocks),” Ross. Zh. Nauk Zemle 3 (3), (2001). http://elpub. w-dcb.ru/journals/rjes/rus/v03/rje01060/rje01060.htm

  43. V. R. Vetrin, V. P. Chupin, and Yu. N. Yakovlev, Metasedimentary basement rocks oft he Paleoproterozoic Pechenga Structure: sources of terrigenous material, paleogeodynamic conditions of formation,“ Litosfera, no. 5, 3–25 (2013).

  44. C. Vogt and J. Knies, “Sediment pathways in the western Barents Sea inferred from clay mineral assemblages in surface sediments,” Norwegian J. Geol. 89, 41–55 (2009).

    Google Scholar 

  45. B. Yan, W. Yan, L. Miao, W. Huang, and Z. Chen, “Geochemical characteristics and provenance implication of rare earth elements in surface sediments from bays along Guangdong Coast, Southeast China,” Environ. Earth Sci. 65 (7), 2195–2205 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the team of R/V Akademik Mstislav Keldysh, D.V. Eroshenko, S.M. Isachenko, G.V. Malofeev, and A.V. Bulokhov, for help in expedition. M.V. Mityaev and I.V. Miskevich are thanked for kindly given samples of bottom sediments, N.S. Glushkova, for help in graphical works, and V.B. Ershova, for compilation of literature sources. Academician A.P. Lisitzin is thanked for valuable comments.

Funding

The studies were financially supported by the Russian Science Foundation (project nos. 14-27-00114, expedition, and 14-27-00114-P, interpretation of results) and by the Ural Branch of the Russian Academy of Sciences (project no. 18-9-5-1) “Sources of Sedimentary Material and Specifics of Formation of Bottom Sediments of the Barents Sea: Geochemical and Sr–Nd–Pb–Isotopic Constraints” (No. АААА-А18-118053090043-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Maslov, A. B. Kuznetsov, N. V. Politova, V. P. Shevchenko, N. V. Kozina, A. N. Novigatsky or M. D. Kravchishina.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, A.V., Kuznetsov, A.B., Politova, N.V. et al. Distribution of Trace and Rare-Earth Elements, and Nd, Pb, and Sr Isotopes in the Surface Sediments of the Barents Sea. Geochem. Int. 58, 687–703 (2020). https://doi.org/10.1134/S0016702920060075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920060075

Keywords:

Navigation