Skip to main content
Log in

Geochronological, Geochemical and Sr–Nd–Pb Isotope Characteristics of the Meydan Ophiolite, SE Turkey: Petrogenesis and Implications for Mesozoic Tectonic Evolution

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Gabbros, sheeted dikes and volcanic rocks of the Meydan ophiolite in the South-east Anatolian orogenic belt were examined to determine their U–Pb zircon ages, whole-rock, mineral chemistry and Nd‒Sr–Pb isotope compositions. The new U–Pb dating of zircon separates yielded a 88.3 ± 1.3 Ma crystallization age for gabbroic rocks of Meydan ophiolite. The ophiolite includes tectonites, ultramafic-mafic cumulates, isotropic gabbros, isolated mafic dikes, sheeted dikes, plagiogranites and rare basalts. The sheeted dikes and volcanics of the Meydan ophiolite exhibit near-flat rare earth element (REE) patterns, flat high field strength element trends and negative Nb anomalies that are similar to other SSZ–type eastern Mediterranean ophiolites. The whole-rock and mineral chemistry of the Meydan ophiolite/volcanic rocks suggests that they formed a supra-subduction zone and the dismembered ophiolite metamorphic sole formed beneath the ophiolite in a subduction trench setting. Isotopic ratios, i.e., 87Sr/86Sr versus 206Pb/204Pb and 143Nd/144Nd versus 87Sr/86Sr, show only limited variations, whereas 143Nd/144Nd versus 206Pb/204Pb, 87Sr/86Sr ratios are much more variable. The isotopic ratios are indicative of mixed magmatic contributions from DMM/MORB and EMII reservoirs that probably reflect the overall recycling of mantle wedge, pelagic sediment, oceanic crust and continentally derived sediment. The Meydan ophiolite, inferred arc volcanics and accretionary mélange are all intruded by Late Cretaceous (87.7 ± 0.47 to 80.1 ± 0.46 Ma; zircon U–Pb) granitic rocks which are evaluated as the product of continental margin arc magmatism. The available regional comparisons suggest that the rocks studied were derived from the Berit Ocean to the north of the Bitlis Pütürge continent, in which the Kömürhan, İspendere and Göksun ophiolites also formed during the Late Cretaceous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. G. Aktaş, and A. H. F. Robertson, “The Maden complex, SE Turkey: evolution of a Neotethyan continental margin” In: The Geological Evolution of the Eastern Mediterranean, Ed. by J. E. Dixon and A. H. F Robertson, Geol Soc Lond Spec Publ. 17: 375–402 (1984).

  2. G. Aktaş and A. H. F. Robertson, “Tectonic evolution of the Tethys suture zone in SE Turkey: evolution evidence from the petrology and geochemistry of late Cretaceous and middle Eocene extrusives” Ophiolites–Oceanic Crustal Analogues. Proceedings of the Troodos Ophiolite Symposium, Geol. Survey, Cyprus, 1987, Ed. by J. Malpas, E. Moores, A. Panayiotou, and C. Xenophontos, (1990), pp. 311–329 (eds), (1990).

  3. R. J. Arculus, and K. J. A. Wills, “The petrology of plutonic blocks and inclusions from Lesser Antilles island arc” J. Petrol. 21, 743–799 (1980).

    Article  Google Scholar 

  4. H. J. Asutay, “The Geology of Baskil (Elazığ) vicinity and petrology of Baskil magmatics” Bull. Mineral Res. Explor. 107,46–72 (1988).

    Google Scholar 

  5. U. Bağci, O. Parlak, and V. Höck, “Whole–rock mineral chemistry of cumulates from the Kızıldağ (Hatay) Ophiolite (Turkey): clues for multiple magma generation during crustal accretion in the Southern Neotethyan Ocean” Mineral. Mag. 69, (1): 53–76 (2005).

    Article  Google Scholar 

  6. U. Bağci, O. Parlak, and V. Höck, “Geochemistry and tectonic environment of diverse magma generations forming the crustal units of the Kızıldağ (Hatay) Ophiolite, Southern Turkey” Turkish J. Earth Sci. 17, 43–71 (2008).

    Google Scholar 

  7. T. F. W. Barth, Theoretical Petrology (John Wiley and Sons, New York, 1962).

    Google Scholar 

  8. L. Beccaluva, G. Macciotta, G. B. Piccardo, and O. Zeda, “Clinopyroxene composition of ophiolite basalts as petrogenetic indicator” Chem. Geol. 77, 165–182 (1989).

    Article  Google Scholar 

  9. M. Beyarslan, and A. F. Bingöl, “Petrology of a supra–subduction zone ophiolite (Elazığ, Turkey)” Can. J. Earth Sci. 37, 1411–1424 (2000).

    Article  Google Scholar 

  10. E. Bingöl, “Batı Anadolunun jeotektonik evrimi”. M.T.A. Dergisi, 86, 14–34 (1975).

    Google Scholar 

  11. L. P. Black, S. L. Kamo, C. M. Allen, and J. N. Aleinikoff, “A new zircon standard for Phanerozoic U–Pb geochronology” Chem. Geol., 200, 155–170 (2003).

    Article  Google Scholar 

  12. L. E. Burns, “The Border Ranges ultramafic and mafic complex, South Central Alaska: cumulate fractionates of island arc volcanics” Can. J. Earth Sci. 22, 1020–1038 (1985).

    Article  Google Scholar 

  13. Ö. F. Çelik, C. Massimo, A. Marzoli, Z. Billor, and R. Marschic, “The Eldivan ophiolite and volcanic rocks in the İzmir–Ankara–Erzincan suture zone, northern Turkey: geochronology, whole–rock geochemical and Nd–Sr–Pb isotope characteristics,” Lithos 172–173, 31–46 (2013).

    Article  Google Scholar 

  14. S. M. DeBari, and R.G. Coleman, “Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic–mafic assemblage, Tonsina, Alaska” J. Geophys. Res. 94, 4373–4391 (1989).

    Article  Google Scholar 

  15. Y. Dilek, and H. Furnes, “Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere” Geol. Soc. Am. Bull. 123, 387–411 (2011).

    Article  Google Scholar 

  16. Y. Dilek, P. Thy, B. Hacker, and S. Grundvig, “Structure and petrology of Tauride ophiolites and mafic dyke intrusions (Turkey): implications for the Neotethyan ocean” Geol. Soc. Am. Bull. 111, 1192–1216 (1999).

    Article  Google Scholar 

  17. M. Duru, Ş. Pehlivan, Y. Şentürk, F. Yavaş, and H. Kar, “New results on the lithostratigrapy of the Kazdağ Massif in nortwest Turkey” Turkish J. Earth Sci.’ A special issue commemorating, Okan Tekeli’, 177–186 (2004).

  18. A. Elmas, and Y. Yilmaz, “Development of an oblique subduction zone—Tectonic evolution of the tethys suture zone in southeast Turkey” Int. Geol. Rev. 45, (9), 827–840 (2003).

    Article  Google Scholar 

  19. T. Erdoğan, “Gölbaşı Yöresinin Jeolojisi” TPAO Raporu, No. 229 (1975).

  20. G. Faure, Principles of Isotope Geology (John Wiley & Sons, New York, 1996).

    Google Scholar 

  21. P. A. Floyd, M. C. Göncüoğlu, J. A. Winchester, and M. K. Yalınız, “Geochemical character and tectonic environment of Neotethyan ophiolitic fragments and metabasites in the Central Anatolian Crystalline Complex, Turkey” Tectonics and Magmatism in Turkey and the Surroundings Area, Ed. by E. Bozkurt, J. A. Winchester, and J. D. A. Piper, Geol. Soc., London, Spec. Publ. 173, 183–202 (2000).

  22. T. Geisler, M. Zhang, E.K.H. Salje, “Low–temperature hydrothermal alteration of natural metamict zircons from the Eastern desert, Egypt” Mineral. Mag. 67, 485–508 (2003).

    Article  Google Scholar 

  23. M. C. Göncüoğlu, K. Kuwahara, U. K. Tekin, and N. Turhan, “Upper Permian (Changxingian) radiolarian cherts within the clastic successions of the “Karakaya Complex” in NW Anatolia” Turkish J. Earth Sci. 13, 201–213 (2004).

    Google Scholar 

  24. N. Görür, F. Y. Oktay, İ. Seymen, and A. M. C. Şengör, “Palaeotectonic Evolution of the Tuzgölü Basin Complex, Central Turkey: sedimentary record of a Neotethyan closure” The Geological Evolution of the Eastern Mediterranean, Ed. by J. E. Dıxon and A. H. F. Robertson, Geol. Soc. London, Spec. Publ. 17, 467–482 (1984).

  25. S. R. Hart, A. J. Erlank, and E. J. D. Kable, “Sea floor basalt alteration: some chemical and Sr isotopic effects,” Contrib. Mineral. Petrol. 44, 219–230 (1974).

    Article  Google Scholar 

  26. R. Hall, “Ophiolite emplacement and the evolution of the Taurus suture zone, southeast Turkey”. Geol. Soc. Am. Bull. 87, 1078–1088 (1976).

    Article  Google Scholar 

  27. S. R. Hart, “Heterogeneous mantle domains: signatures, genesis and mixing chronologies” Earth Planet. Sci. Lett. 90, 273–296 (1988).

    Article  Google Scholar 

  28. R. Hébert, and R. Laurent, “Mineral chemistry of the plutonic section of the Troodos Ophiolite: new constraints for genesis of arc–related ophiolites,” Ophiolites, Oceanic Crustal Analogues, Proceeding Troodos Ophiolite Symposium–1987, Ed. by J. Malpas, E. Moores, A. Panayiotou, and C. Xenophontos (1990), pp. 149–163.

  29. M. S. A. Horstwood, J. Košler, G. Gehrels, S. E. Jackson, N. M. McLean, C. Paton, N. J. Pearson, K. Sircombe, P. Sylvester, P. Vermeesch, J. F. Bowring, D. J. Condon, B. Schoene, “Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting” Geostandards and Geoanalytical Research, 40, 301–332 (2016).

  30. G. A. Jenner, G. R. Dunning, J. Malpas, M. Brown, and T. Brace, “Bay of Islands and Little Port Complexes, Revisited: Age, Geochemical and Isotopic Evidence Confirm Suprasubduction Zone Origin” Canadian Journal of Earth Sciences, 28, 1635–1652 (1991).

    Article  Google Scholar 

  31. S. E. Jackson, N. J. Pearson, W. L. Griffin, E. A. Belousova, “The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology” Chemical Geology, 211, 47–69 (2004).

  32. F. Karaoğlan, “Güneydoğu Anadolu Orojenik Kuşağindaki Ofiyolitik ve Granitik Kayaçlarin Jeokronolojisi” Doktora tezi, Çukurova Üniversitesi Fen bilimleri Enstitüsü, 1–303 (2012).

  33. F. Karaoğlan, O. Parlak, A.H.F. Robertson, M. Thöni, U. Klötzli, F. Koller, and A.İ. Okay, “Evidence of Eocene high–temperature/high–pressure metamorphism of ophiolitic rocks and granitoid intrusion related to Neotethyan subduction processes (Doğanşehir area, SE Anatolia, Geological Development of Anatolia and the Easternmost Mediterranean Region, Ed. by A. H. F. Robertson, O. Parlak, and U. C. Ünlügenç, Geol. Soc. London Spec. Publ. 372, (2013).

  34. P. D. Kempton, H. Downes, and A. Embeyisztin, “Mafic granulite xenoliths in Neogene alkali basalts from the Western Pannonian basin: insights into the lower crust of a collapsed orogeny” J. Petrol. 38, 941–970 (1997).

    Article  Google Scholar 

  35. İ. Ketin, “Türkiye Jeolojisine Genel Bir Bakış” İstanbul Teknik Üniversitesi Matbaası, Gümüşsuyu – İstanbul (1983).

    Google Scholar 

  36. B. E. Leake, A. R. Woolley, C. E. S. Arps, W. D. Brich, M. C. Gilbert, J. D. Grice, F. C. Hawthorne, A. Kato, H. J. Kisch, V. G. Krivovichev, K. Linthout, J. Laird, J. A. Mandarino, W. V. Maresh, E. H. Nickel, N. M. S. Rock, J. C. Schumacher, D. C. Smith, N. C. C. Stephenson, L. Ungaretti, E. J. W. Whittaker, and Guoyouzhi, “Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association” Commission on New Minerals and Mineral Names,” Can. Mineral. 35, 219–246 (1997).

    Google Scholar 

  37. G. M. Mason, D. V. Reames, B. Klecker, D. Hovestadt, and T. T. Von Rosenvinge, “The heavy–ion compositional signature in He–3–rich solar particle events” Astrophys. J., 303, 849 – 860 (1986).

    Article  Google Scholar 

  38. M. A. Meschede, “Method of discriminating between different types of mid ocean ridge basalts and continental tholeiites with The Nb–Zr–Y diagram” Chem. Geol. 56, 207–218 (1986).

    Article  Google Scholar 

  39. N. Nurlu, “Origin of the İspendere (Malatya) ophiolite”. MSc thesis, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü (Adana, 2009).

  40. N. Nurlu, “Geochemistry and Tectonic Signifiance of the Tectonomagmatic Units in the Helete (Kahramanmaraş) Region”. PhD Thesis, Çukurova University Intitute of Natural and Applied Sciences, 1–281 (2016)

  41. N. Nurlu, O. Parlak, A.H.F. Robertson, and A. Quadt, “Implications of Late Cretaceous U–Pb zircon ages of granitic intrusions cutting ophiolitic and volcanogenic rocks for the assembly of the Tauride allochton in SE Anatolia (Helete area, Kahramanmaraş Region, SE Turkey),” Int. J. Earth Sci. 105, 283–314 (2016).

    Article  Google Scholar 

  42. A. I. Okay, Geology of the Menderes Massif and the Lycian nappes south of Denizli, western Taurides,” Bull. Mineral Res. Explor. 109, 37–51 (1989).

    Google Scholar 

  43. A. I. Okay, “Was the Late Triassic orogeny in Turkey caused by the collision of an oceanic plateau?” Tectonics and Magmatism in Turkey and Surrounding Area, Ed. by E. Bozkurt, J. A. Winchester, and J. D. A. Piper, Geol. Soc. London, Spec. Publ. 173, 25–41 (2000).

  44. A. I. Okay, and O., Tüysüz, “Tethyan sutures of northern Turkey” The Mediterranean Basins: Tertiary Extensions within the Alpine Orogen, Ed. by B. Durand, L. Jolıvet, F. Horvath, and M. Seranne, Geol. Soc. London, Spec. Publ. 156, 474–515 (1999).

  45. A. I. Okay and M.C. Göncüoğlu, “The Karakaya Complex: a review of data and concepts” Turkish J. Earth Sci. 13, 77–95 (2004).

    Google Scholar 

  46. A. I. Okay, and D. Altiner, “Uppermost Triassic limestone in the Karakaya Complex–stratigraphic and tectonic significance,” Turkish J. Earth Sci. 13 (2), 187–199 (2004).

    Google Scholar 

  47. N. Özgül, “Geology of the Munzur mountains (in Turkish)” Report of the Maden Tetkik ve Arama Enstitüsü, No. 6995, 136 (1981).

    Google Scholar 

  48. O. Parlak, M. Delaloye, and E. Bingöl, “Mineral chemistry of ultramafic and mafic cumulates as an indicator of the arc–related origin of the Mersin Ophiolite (Southern Turkey),” Geol. Rundsch. 85 (4), 647–661 (1996).

    Article  Google Scholar 

  49. O. Parlak, V. Höck, M. Delaloye, “Suprasubduction zone origin of the Pozantı–Karsantı Ophiolite (Southern Turkey) deduced from whole rock and mineral chemistry of the gabbroic cumulates” Tectonics and Magmatism in Turkey and the Surrounding Area, Ed. by E. Bozkurt, J. A. Winchester, and J. D. A. Piper, Geol. Soc. London, Spec. Publ. 173, 219–234 (2000).

  50. O. Parlak, V. Höck, H. Kozlu, and M. Delaloye, “Oceanic crust generation in an island arc tectonic setting, SE Anatolian Orogenic Belt (Turkey)” Geol. Mag. 141, 583–603 (2004).

    Article  Google Scholar 

  51. O. Parlak, T. Rizaoğlu, U. Bağci, F. Karaoğlan, and V. Höck, “Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey,” Tectonophysics 473, 173–187 (2009).

    Article  Google Scholar 

  52. O. Parlak, F. Karaoğlan, T. Rizaoğlu, N. Nurlu, U. Bağci, V. Höck, A. Önal, S. Kürüm, and Y. Topak, “Petrology of the İspendere ophiolite from the Southeast Anatolia: implications for the Late Mesozoic evolution of the southern Neotethyan ocean” Geological Development of Anatolia and the Easternmost Mediterranean Region, Ed. by A. H. F. Robertson., O. Parlak, and U. C. Ünlügenç, Geol. Soc. London, Spec. Publ. 372, (2013).

  53. C. Paton, J. Hellstrom, B. Paul, J. Woodhead, J. Hergt, “Iolite: freeware for the visualisation and processing of mass spectrometric data” J. Anal. At. Spectrom., 26, 2508–2518 (2011).

  54. J. A. Pearce, “Trace element characteristics of lavas from destructive plate boundaries,” Andesites, Ed. by J. S. Thorpe (John Wiley, New York, 1982), pp. 525–548.

    Google Scholar 

  55. J. A. Pearce, “A users guide to basalt discrimination diagrams, Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration, Ed. by D. A. Wyman, Geol. Ass. Can., Short Course Notes, 12, 79–113 (1996).

  56. J. A. Pearce, and J. R. Cann, “Tectonic setting of basaltic volcanic rocks determined using trace element analysis”. Earth Planet. Sci. Lett. 19, 290–300 (1973).

  57. J. A. Pearce, and M. J. Norry, “Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks” Contrib. Mineral. Petrol. 69, 33–47 (1979).

    Article  Google Scholar 

  58. J. A. Petrus, B. S. Kamber, “VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction” Geostandards and Geoanalytical Research, 36, 247–270 (2012).

  59. D. Perinçek, “The Geology of Hazro–Korudağ–Çüngüş–Maden–Ergani–Hazar–Elazığ–Malatya Area” Guide book. Türkiye Jeoloji Kurumu (Yayını, 1979).

    Google Scholar 

  60. D. Perinçek, and H. Kozlu, “Stratigraphy and structural relations of the units in the Afşin–Elbistan–Doğanşehir Region (Eastern Taurus)” Proceedings of International Symposium. Geology of Taurus Belt, MTA, Ankara–Turkey (Ankara, 1984), pp. 181–198.

  61. E. A. Pickett and A. H. F. Robertson, “Formation of the Late Paleozoic–Early Mesozoic Karakaya complex and related ophiolites in northwestern Turkey by Palaeotethyan subduction–accretion,” J. Geol. Soc. London, 153, 995–1009 (1996).

    Article  Google Scholar 

  62. E. A. Pickett and A. H. F. Robertson, “Significance of the volcanogenic Nilufer unit and related components of the Triassic Karakaya Complex for Tethyan subduction/accretion processes in NW Turkey” Turkish J. Earth Sci. 13, 97–143 (2004).

    Google Scholar 

  63. C. Pin, D. Briot, C. Bassin, and F. Poitrasson, “Concomitant separation of strontium and samarium–neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography,” Anal. Chim. Acta, 298, 209–217 (1994).

    Article  Google Scholar 

  64. T. Rizaoğlu, O. Parlak, V. Höck, and F. İşler, “Nature and significance of Late Cretaceous ophiolitic rocks and its relation to the Baskil granitoid in Elazığ region, SE Turkey,” Geol. Soc. London, Spec. Publ., 260, 327–350 (2006).

    Article  Google Scholar 

  65. A. H. F. Robertson, “Mesozoic-Tertiary Tectonic-Sedimentary Evolution of a South Tethyan Oceanic Basin and its Margins in Southern Turkey” Geol. Soc. London, Spec. Publ., 173, 97–138 (2000).

  66. A. H. F. Robertson, “Overview of the genesis and emplacement of mesozoic ophiolites in the Eastern Mediterranean Tethyan region” Lithos, 65, 1–67 (2002).

    Article  Google Scholar 

  67. A. H. F. Robertson, and D. E. Dixon, “Introduction: aspects of the geological evolution of the eastern Mediterranean” The Geological Evolution of the Eastern Mediterranean, Ed. by J. E. Dixon and A. H. F. Robertson, Geol. Soc. London, Spec. Publ. 17, 1–7 (1984).

  68. A. H. F. Robertson, T. Ustaömer, O. Parlak, U. Ünlügenç, K. Taşli, and N. İnan, “The Berit transect of the Tauride thrust belt, S Turkey: Late Cretaceous–Early Cenozoic accretionary/collisional processes related to closure of the Southern Neotethys” J. Asian Earth Sci. 27, 108–145 (2006).

    Article  Google Scholar 

  69. A. H. F. Robertson, O. Parlak, T. Rizaoğlu, Ü. Ünlügenç, N. İnan, K. Tasli, and T. Ustaömer, “Tectonic evolution of the South Tethyan ocean: evidence from the Eastern Taurus Mountains (Elazığ region, SE Turkey)” Geol. Soc. London, Spec. Publ. 272, 231–270 (2007).

    Article  Google Scholar 

  70. A. H. F. Robertson, U. C. Ünlügenç, N. İnan, and K. Taslı, “The Misis–Andırın complex: a Mid–Tertiary melange related to late–stage subduction of the Southern Neotethys in S Turkey” J. Asian Earth Sci. 22, 413–453 (2004).

    Article  Google Scholar 

  71. A. M. C. Şengör, and Y. Yilmaz, “Tethyan evolution of Turkey: a plate tectonic approach” Tectonophysics, 75, 181–241 (1981).

    Article  Google Scholar 

  72. J. Sláma, J. Košler, D. J. Condon, J. L. Crowley, A. Gerdes, J. M. Hanchar, M. S. A. Horstwood, G. A. Morris, L. Nasdala, N. Norberg, U. Schaltegger, B. Schoene, M. N. Tubrett, M. J. Whitehouse, “Plešovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis” Chemical Geology, 241, 1–35 (2008).

  73. G. M. Stampfli, “Tethyan oceans,” Tectonics and Magmatism in Turkey and Surrounding Area, Ed. by E. Bozkurt, J. A. Winchester, and J. D. A. Piper, Geol. Soc. London, Spec. Publ., 173, 163–185 (2000).

  74. S. S. Sun, and W. F. Mcdonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. London, Spec. Publ. 42, 313–347 (1989).

  75. P. A. Ustaömer, T. Ustaömer, and A. H. F. Robertson, “Ion probe U–Pb dating of the Central Sakarya basement: a peri–Gondwana terrane intruded by late Lower Carboniferous subduction/collision–related granitic rocks,” Turk. J. Earth Sci. 21, 905–932 (2012).

    Google Scholar 

  76. T. Ustaömer, and A. H. F. Robertson, “Late Palaeozoic marginal basin and subduction–accretion: the Palaeotethyan Küre Complex, Central Pontides, northern Turkey,” J. Geol. Soc. London 151, 291–305 (1994).

    Article  Google Scholar 

  77. J. A. Winchester, and P. A. Floyd, “Geochemical discrimination of different magma series and their differentiation products using immobile elements,” Chem. Geol. 16, 325–343 (1977).

  78. E. Yazgan and R. Chessex, “Geology and tectonic evolution of the southeastern Taurides in the region of Malatya” Turk. Assoc. Petrol. Geol. 3,1–42 (1991).

    Google Scholar 

  79. E. Yiğitbaş, “Engizek Dağı (K. Maraş) dolayındaki tektonik birliklerin petrolojik İncelenmesi”. Unpubl. (Doktora tezi) University of İstanbul (1989).

    Google Scholar 

  80. E. Yiğitbaş and Y. Yilmaz, “New evidence and solution to Maden Complex controversy of the southeast Anatolian orogen (Turkey),” Geol. Rundsc. 85, 250–263 (1996).

    Article  Google Scholar 

  81. E. Yiğitbaş, Y. Yilmaz, Ş. C. Genç, “Güneydoğu Anadolu Orojenik Kuşağında Eosen nap yerleşmesi” Tür.9. Petrol. Kong. Tebliğler, 307–318 (1992).

  82. M. Yildirim, and Y. Yilmaz, “Güneydoğu Anadolu Orojenik Kuşağının Ekaylı Zonu” Türkiye Petrol. Jeologları Derneği Dergisi, 3, 57–73 (1991).

    Google Scholar 

  83. Y. Yilmaz, “New evidence and model on the evolution of the southeast Anatolian Orogen,” Bull. Geol. Soc. Am. 105, 251–71 (1993).

    Article  Google Scholar 

  84. Y. Yilmaz, E. Yiğitbaş, and Ş. C. Genç, “Ophiolitic and metamorphic assemblages of southeast Anatolia and their significance in the geological evolution of the orogenic belt,” Tectonics, 12, 1280–1297 (1993).

    Article  Google Scholar 

  85. Y. Yilmaz, O. Tüysüz, E. Yiğitbaş, S. C. Genç, & A. M. C. Şengör, “Geology and tectonic evolution of the Pontides” Regional and Petroleum Geology of the Black Sea and Surrounding Regions, Ed. by A. G. Robınson, Am. Ass. Petrol. Geol. Mem. 68, 183–226 (1997).

  86. A. Zindler, and S. Hart, “Chemical geodynamics,” Ann. Rev. Earth Planet Sci. 14, 493–571 (1986).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is much indebted to Dr. Erik M. Galimov (Editor-in-Chief) and two anonymous reviewers for constructive and careful editorial comments and reviews that improved the quality of the paper significantly. This work is a part of the PhD study of the author. Financial support from the Çukurova University Research Foundation (Project no. MMF2011D12; Project no. FBA-2018-10777), TÜBİTAK (The Scientific and Technological Research Council of Turkey; Project no. 113Y037) and Darius programme are acknowledged. I would like to thank Dr. Laura BRACCIALI for LA-ICP-MS Zircon Analyses and Osman Parlak and Alastair Robertson are acknowledged for their important supervision. I would like to thank Albrecht von Quadt for performing the isotopic analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nusret Nurlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nusret Nurlu Geochronological, Geochemical and Sr–Nd–Pb Isotope Characteristics of the Meydan Ophiolite, SE Turkey: Petrogenesis and Implications for Mesozoic Tectonic Evolution. Geochem. Int. 58, 639–669 (2020). https://doi.org/10.1134/S0016702920060099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920060099

Keywords:

Navigation