Skip to main content
Log in

Investigation on dielectric properties of chlorodifluoromethane and mixture with other N2/CO2/air as a promising substitute to SF6 in high voltage application

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Sulphur hexafluoride (SF6) has been the most commonly used gas in the electrical industry since 1960s. Due to the high environmental hazards reported by using SF6, the research on to investigate alternative gaseous insulation has become demanding research in high voltage engineering. The refrigerant gas chlorodifluoromethane (CHClF2) with low global warming potential and stable chemical properties possess high dielectric strength due to the presence of fluorine atoms. In this paper, the dielectric strength of CHClF2 and its mixtures with CO2, N2, and Air in the uniform field are investigated under AC, DC and impulse voltage. Buffer gases (CO2, N2, and Air) are added to improve the boiling point of base gas (CHClF2). The dielectric strength increase has also been reported by mixing base gas with N2. Moreover, the synergistic effect, liquefaction temperature, and self-recoverability test were also obtained proving the significance of the research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Koch H, Goll F, Magier T et al (2018) Technical aspects of gas insulated transmission lines and application of new insulating gases. IEEE Trans Dielectr Electr Insul 25(4):1448–1453

    Article  Google Scholar 

  2. Li Y, Zhang X, Ye F et al (2020) Influence regularity of O2 on dielectric and decomposition properties of C4F7N–CO2–O2 gas mixture for medium-voltage equipment. High Volt. https://doi.org/10.1049/hve.2019.0219

  3. Gao Z, Wang Y, Wang S et al (2019) Investigation of synthesis and dielectric properties of c-C4F8O with its CO2/N2 mixtures as SF6 alternatives in gas-insulated applications. IEEE Access 8:3007–3015

    Article  Google Scholar 

  4. Fahey W, Hegglin MI (2010) Twenty questions and answers about the ozone layer: 2010 update. WMO Assesment

  5. Owens JG (2016) Greenhouse gas emission reductions through use of a sustainable alternative to SF6. In: Electrical insulation conference (EIC) Montréal, Qc, Canada, pp 535–5381

  6. Li X, Zhao H, Murphy AB et al (2018) SF6-alternative gases for application in gas-insulated switchgear. J Phys D Appl Phys 51(15):1–19

    Article  Google Scholar 

  7. Kamarudin MS, Albano M, Coventry P et al (2010) A survey on the potential of CF3I gas as an alternative for SF6 in high voltage applications. In: UPEC, pp 6–10

  8. Wang Y, Gao ZW, Li GX et al (2018) Breakdown characteristics of SF6/N2 in severely non-uniform electric fields at low temperatures. In: IOP conference series: materials science and engineering, pp 1–7

  9. Zhao H, Li X, Tang N et al (2018) Dielectric properties of fluoronitriles/CO2 and SF6/N2 mixtures as a possible SF6-substitute gas. IEEE Trans Dielectr Electr Insul 25(4):1332–1339

    Article  Google Scholar 

  10. Wang W, Rong M, Wu Y et al (2014) Fundamental properties of high-temperature SF6 mixed with CO2 as a replacement for SF6 in high-voltage circuit breakers. J Phys D Appl Phys 47(25):1–16

    Article  Google Scholar 

  11. Wang W, Murphy AB, Rong M et al (2013) Investigation on critical breakdown electric field of hot sulfur hexafluoride/carbon tetrafluoride mixtures for high voltage circuit breaker applications. J Appl Phys 114(10):1–13

    Article  Google Scholar 

  12. Li X, Zhao H, Jia S et al (2013) Study of the dielectric breakdown properties of hot SF6-CF4 mixtures at 0.01–1.6 MPa. J Appl Phys 114(5):1–7

    Google Scholar 

  13. Hwang CH, Lee BT, Huh CS et al (2009) Breakdown characteristics of SF6/CF4 mixtures in 25.8 kV. In: Proceedings of the 12th international conference on electrical machines and system. ICEMS, pp 6–9

  14. Wang W, Rong M, Wu Y (2014) Transport coefficients of high temperature SF6–He mixtures used in switching applications as an alternative to pure SF6. Plasma Chem Plasma Process 34(4):899–916

    Article  Google Scholar 

  15. Beroual A, Haddad A (2017) Recent advances in the quest for a new insulation gas with a low impact on the environment to replace sulfur hexafluoride (SF6) gas in high-voltage power network applications. Energies 10(8):1216

    Article  Google Scholar 

  16. Hopf A, Britton JA, Rossner M et al (2017) Dielectric strength of SF6 substitutes, alternative insulation gases and PFC-gas-mixtures. In: Electrical insulation conference (EIC), Baltimore, MD, USA, pp 11–14

  17. Hikita M, Ohtsuka S, Okabe S et al (2009) Breakdown mechanism in C3F8/CO2 gas mixture under non-uniform field on the basis of partial discharge properties. IEEE Trans Dielectr Electr Insul 16(5):1413–1419

    Article  Google Scholar 

  18. Wada J, Ueta G, Okabe S et al (2016) Dielectric properties of gas mixtures with per-fluorocarbon gas and gas with low liquefaction temperature. IEEE Trans Dielectr Electr Insul 23(2):838–847

    Article  Google Scholar 

  19. Zhong L, Wang J, Wang X et al (2018) Comparison of dielectric breakdown properties for different carbon-fluoride insulating gases as SF6 alternatives. AIP Adv 8(8):1–13

    Article  Google Scholar 

  20. Zhao H, Li X, Lin H (2017) Insulation Characteristics of c-C4F8-N2 and CF3I-N2 mixtures as possible substitutes for SF6. IEEE Trans Power Deliv 32(1):254–262

    Article  Google Scholar 

  21. Xiao S, Tian S, Cressault Y et al (2018) Study on the influence of O2 on the breakdown voltage and self-recovery characteristics of c-C4F8/N2 mixture. AIP Adv 8(8):085121

    Article  Google Scholar 

  22. Zhang Y, Zhang X, Li Y et al (2019) AC breakdown and decomposition characteristics of environmental friendly gas C5F10O/Air and C5F10O/N2. IEEE Access 7:73954–73960

    Article  Google Scholar 

  23. Guo Z, Li X, Li B et al (2019) Dielectric properties of C5-PFK mixtures as a possible SF6 substitute for MV power equipment. IEEE Trans Dielectr Electr Insul 26(1):129–136

    Article  Google Scholar 

  24. Wang Y, Huang D, Liu J et al (2019) Alternative environmentally friendly insulating gases for SF6. Processes 7(4):1–14

    Article  Google Scholar 

  25. Nechmi HE, Beroual A, Girodet A et al (2016) Fluoronitriles/CO2 gas mixture as promising substitute to SF6 for insulation in high voltage applications. IEEE Trans Dielectr Electr Insul 23(5):2587–2593

    Article  Google Scholar 

  26. Wang C, Yi C, Tu Y et al (2018) Characteristics of C3F7CN/CO2 as an alternative to SF6 in HVDC-GIL systems. IEEE Trans Dielectr Electr Insul 25(4):1351–1356

    Article  Google Scholar 

  27. Li Y, Zhang X, Chen Q et al (2018) Study on the dielectric properties of C4F7N/N2 mixture under highly non-uniform electric field. IEEE Access 6:42868–42876

    Article  Google Scholar 

  28. Li Y, Zhang X, Xiao S et al (2018) Decomposition properties of C4F7N/N2 gas mixture: an environmentally friendly gas to replace SF6 decomposition properties of C4F7N/N2 gas mixture. Ind Eng Chem Res 57(14):5173–5182

    Article  MathSciNet  Google Scholar 

  29. Li Y, Zhang X, Zhang J et al (2019) Assessment on the toxicity and application risk of C4F7N: a new SF6 alternative gas. J Hazard Mater 368:653–660

    Article  Google Scholar 

  30. Li Y, Zhang X, Chen Q et al (2019) Study on the thermal interaction mechanism between C4F7N-N2 and copper, aluminum. Corros Sci 153(1):32–46

    Article  Google Scholar 

  31. Ullah R, Rashid A, Khan F et al (2017) Dielectric characteristic of dichlorodifluoromethane (R12) gas and mixture with N2/air as an alternative to SF6 gas. High Volt 2(3):205–210

    Article  Google Scholar 

  32. Ullah R, Ullah Z, Haider A et al (2018) Dielectric properties of tetrafluoroethane (R134) gas and its mixtures with N2 and air as a sustainable alternative to SF6 in high voltage applications. Electr Power Syst Res 163:532–537

    Article  Google Scholar 

  33. United S (2003) CGA P-20 Standard for classification of toxic gas mixtures

  34. Beroual A, Khaled UC et al (2017) Experimental investigation of breakdown voltage of CO2, N2 and SF6 gases, and CO2-SF6 and N2-SF6 mixtures under different voltage waveform. Energies 11(4):292–304

    Google Scholar 

  35. Zhang X, Chen Q, Zhang J et al (2019) Experimental study on power frequency breakdown characteristics of C4F7N/CO2 gas mixture under quasi-homogeneous electric field. IEEE Access 7:19100–19108

    Article  Google Scholar 

  36. IET 60052 (2002) Voltage measurement by means of standard air gaps

  37. Guo C, Zhang Q, You H et al (2017) Influence of electric field non-uniformity on breakdown characteristics in SF6/N2 gas mixtures under lightning impulse. IEEE Trans Dielectr Electr Insul 24(4):2248–2258

    Article  Google Scholar 

  38. Zhang X, Tian S, Xiao S et al (2017) Experimental studies on the power-frequency breakdown voltage of CF3I/N2/CO2 gas mixture. J Appl Phys 121(10):1–7

    Google Scholar 

  39. Qiu XQ, Chalmers ID, Coventry P (1999) A study of alternative insulating gases to SF6. J Phys D Appl Phys 32(22):2918–2922

    Article  Google Scholar 

  40. Kamei A, Beyerlein SW, Lemmon EW (1992) A fundamental equation for chlorodifluoromethane (R-22). Fluid Phase Equilib 80:71–85

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zaheer Saleem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, M.Z., Kamran, M., Amin, S. et al. Investigation on dielectric properties of chlorodifluoromethane and mixture with other N2/CO2/air as a promising substitute to SF6 in high voltage application. Electr Eng 102, 2341–2348 (2020). https://doi.org/10.1007/s00202-020-01034-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01034-2

Keywords

Navigation