Czechoslovak Mathematical Journal, Vol. 70, No. 2, pp. 323-337, 2020


Maximal non $\lambda$-subrings

Rahul Kumar, Atul Gaur

Received June 22, 2018.   Published online November 18, 2019.

Abstract:  Let $R$ be a commutative ring with unity. The notion of maximal non $\lambda$-subrings is introduced and studied. A ring $R$ is called a maximal non $\lambda$-subring of a ring $T$ if $R\subset T$ is not a $\lambda$-extension, and for any ring $S$ such that $R\subset S\subseteq T$, $S\subseteq T$ is a $\lambda$-extension. We show that a maximal non $\lambda$-subring $R$ of a field has at most two maximal ideals, and exactly two if $R$ is integrally closed in the given field. A determination of when the classical $D + M$ construction is a maximal non $\lambda$-domain is given. A necessary condition is given for decomposable rings to have a field which is a maximal non $\lambda$-subring. If $R$ is a maximal non $\lambda$-subring of a field $K$, where $R$ is integrally closed in $K$, then $K$ is the quotient field of $R$ and $R$ is a Prüfer domain. The equivalence of a maximal non $\lambda$-domain and a maximal non valuation subring of a field is established under some conditions. We also discuss the number of overrings, chains of overrings, and the Krull dimension of maximal non $\lambda$-subrings of a field.
Keywords:  maximal non $\lambda$-subring; $\lambda$-extension; integrally closed extension; valuation domain
Classification MSC:  13B02, 13B22, 13A18


References:
[1] A. Ayache, A. Jaballah: Residually algebraic pairs of rings. Math. Z. 225 (1997), 49-65. DOI 10.1007/PL00004598 | MR 1451331 | Zbl 0868.13007
[2] A. Azarang: On maximal subrings. Far East J. Math. Sci. 32 (2009), 107-118. MR 2526909 | Zbl 1164.13004
[3] A. Azarang, O. A. S. Karamzadeh: On the existence of maximal subrings in commutative Artinian rings. J. Algebra Appl. 9 (2010), 771-778. DOI 10.1142/S0219498810004208 | MR 2726553 | Zbl 1204.13008
[4] A. Azarang, G. Oman: Commutative rings with infinitely many maximal subrings. J. Algebra Appl. 13 (2014), Article ID 1450037, 29 pages. DOI 10.1142/S0219498814500376 | MR 3200115 | Zbl 1308.13012
[5] A. Badawi: On 2-absorbing ideals of commutative rings. Bull. Aust. Math. Soc. 75 (2007), 417-429. DOI 10.1017/S0004972700039344 | MR 2331019 | Zbl 1120.13004
[6] E. Bastida, R. Gilmer: Overrings and divisorial ideals of rings of the form $D+M$. Mich. Math. J. 20 (1973), 79-95. DOI 10.1307/mmj/1029001014 | MR 0323782 | Zbl 0239.13001
[7] M. Ben Nasr, N. Jarboui: On maximal non-valuation subrings. Houston J. Math. 37 (2011), 47-59. MR 2786545 | Zbl 1222.13007
[8] D. E. Davis: Overrings of commutative rings III: Normal pairs. Trans. Am. Math. Soc. 182 (1973), 175-185. DOI 10.1090/S0002-9947-1973-0325599-3 | MR 0325599 | Zbl 0272.13004
[9] D. E. Dobbs: On INC-extensions and polynomials with unit content. Can. Math. Bull. 23 (1980), 37-42. DOI 10.4153/CMB-1980-005-8 | MR 0573556 | Zbl 0432.13007
[10] D. E. Dobbs, G. Picavet, M. Picavet-L'Hermitte: Characterizing the ring extensions that satisfy FIP or FCP. J. Algebra 371 (2012), 391-429. DOI 10.1016/j.jalgebra.2012.07.055 | MR 2975403 | Zbl 1271.13022
[11] D. E. Dobbs, J. Shapiro: Normal pairs with zero-divisors. J. Algebra Appl. 10 (2011), 335-356. DOI 10.1142/S0219498811004628 | MR 2795742 | Zbl 1221.13012
[12] E. G. Evans, Jr.: A generalization of Zariski's main theorem. Proc. Am. Math. Soc. 26 (1970), 45-48. DOI 10.1090/S0002-9939-1970-0260716-8 | MR 0260716 | Zbl 0198.06001
[13] M. S. Gilbert: Extensions of Commutative Rings with Linearly Ordered Intermediate Rings. PhD Thesis. University of Tennessee, Knoxville (1996). Available at https://search.proquest.com/docview/304271872?accountid=8179. MR 2695057
[14] R. W. Gilmer, Jr.: Overrings of Prüfer domains. J. Algebra 4 (1966), 331-340. DOI 10.1016/0021-8693(66)90025-1 | MR 0202749 | Zbl 0146.26205
[15] R. Gilmer: Some finiteness conditions on the set of overrings of an integral domain. Proc. Am. Math. Soc. 131 (2003), 2337-2346. DOI 10.1090/S0002-9939-02-06816-8 | MR 1974630 | Zbl 1017.13009
[16] R. W. Gilmer, Jr., J. F. Hoffmann: A characterization of Prüfer domains in terms of polynomials. Pac. J. Math. 60 (1975), 81-85. DOI 10.2140/pjm.1975.60.81 | MR 0412175 | Zbl 0307.13011
[17] A. Jaballah: Maximal non-Prüfer and maximal non-integrally closed subrings of a field. J. Algebra Appl. 11 (2012), Article ID 1250041, 18 pages. DOI 10.1142/S0219498811005658 | MR 2983173 | Zbl 1259.13004
[18] I. Kaplansky: Commutative Rings. University of Chicago Press, Chicago (1974). MR 0345945 | Zbl 0296.13001
[19] R. Kumar, A. Gaur: On $\lambda$-extensions of commutative rings. J. Algebra Appl. 17 (2018), Article ID 1850063, 9 pages. DOI 10.1142/S0219498818500639 | MR 3786742 | Zbl 1395.13006
[20] I. J. Papick: Topologically defined classes of going-down domains. Trans. Am. Math. Soc. 219 (1976), 1-37. DOI 10.1090/S0002-9947-1976-0401745-0 | MR 0401745 | Zbl 0345.13005

Affiliations:   Rahul Kumar, Atul Gaur (corresponding author), Department of Mathematics, University of Delhi, Guru Tegh Bahadur Road, University of Delhi, Delhi 110 007, India, e-mail: rahulkmr977@gmail.com, gaursatul@gmail.com


 
PDF available at: