Skip to main content
Log in

Regarding some thermoelastic models of “coating-substrate” system deformation

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In present research, we investigate dynamic coupled thermoelasticity problem for a “coating-substrate” system. We present a number of models of thermoelastic deformation of the “coating-substrate” system with thermomechanical characteristics which may vary both continuously and discontinuously. To solve these problems, we use the variational principle of coupled thermoelasticity in the Laplace transforms space and hypotheses on a distribution of temperature and displacements transforms. The transforms inversion is realized according to the Durbin method. The calculations were carried out based on both proposed simplified models and FEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Padture, N.R., Gell, M., Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2002)

    Article  ADS  Google Scholar 

  2. Lyukshin, P.A., Lyukshin, B.A., Matolygina, N.Y., Panin, S.V.: Stress-strain state of the thermal barrier coating on an elastic base after loss of stability of the coating. Fizicheskaya Mezomekhanika 20(4), 52–62 (2017). (in Russian)

    Google Scholar 

  3. Naebe, M., Shirvanimoghaddam, K.: Functionally graded materials: a review of fabrication and properties. Appl. Mater. Today 5, 223–245 (2016)

    Article  Google Scholar 

  4. Koizumi, M.: The concept of FGM ceramic transactions. Funct. Gradient Mater. 34, 3–10 (1993)

    Google Scholar 

  5. Shulz, U., Peters, M., Bach, F.W., Tegeder, G.: Graded coatings for thermal, wear and corrosion barriers. Mater. Sci. Eng A 362(1–2), 61–80 (2003)

    Article  Google Scholar 

  6. Lee, W.Y., Stinton, D.P., Bernardt, C.C., Erdogan, F., Lee, Y.D., Mutasin, Z.: Concept of functionally graded materials for advanced thermal barrier coatings applications. J. Am. Ceram. Soc. 19(3), 3003–3012 (1996)

    Article  Google Scholar 

  7. Wetherhold, R.C., Seelman, S., Wang, J.: The use of functionally graded materials to eliminated or control thermal deformation. Compos. Sci. Technol. 56, 1099–1104 (1996)

    Article  Google Scholar 

  8. Choules, B.D., Kokini, K.: Architecture of functionally graded ceramic coatings against surface thermal fracture. J. Eng. Mater. Technol. 118(1), 522–528 (1996)

    Article  Google Scholar 

  9. Kieback, B., Neubrand, A., Riedel, H.: Processing techniques for functionally graded materials. Mater. Sci. Eng. 362, 81–105 (2003)

    Article  Google Scholar 

  10. Suresh, S.: Graded materials for resistance to contact deformation and damage. Science 292(5526), 2447–2451 (2001)

    Article  ADS  Google Scholar 

  11. Mahmoud, N.-A.: Reduction of thermal stresses by developing two-dimensional functionally graded materials. Int. J. Solids Struct 40, 7339–7356 (2003)

    Article  Google Scholar 

  12. Hsueh, C.H.: Thermal stresses in elastic multilayer systems. Thin Solid Films 418, 182–188 (2002)

    Article  ADS  Google Scholar 

  13. Neng, H.Z.: Thermoelastic stresses in multilayered beams. Thin Solid Films 515, 8402–8406 (2007)

    Article  Google Scholar 

  14. Shaw, L.L.: Thermal residual stresses in plates and coatings composed of multi-layered and functionally graded materials. Compos. B 29(3), 199–210 (1998)

    Article  Google Scholar 

  15. Lee, Y.-D., Erdogan, F.: Residual/thermal stresses in FGM and laminated thermal barrier coatings. Int. J. Fract. 69(2), 145–165 (1994)

    Article  Google Scholar 

  16. Noda, N.: Thermal stresses in functionally graded materials. J. Therm. Stress. 22(4–5), 477–512 (1999)

    Article  Google Scholar 

  17. Birman, V., Byrd, L.W.: Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60(5), 195–216 (2007)

    Article  ADS  Google Scholar 

  18. Ming, P., Xiao, J., Liu, J., Zhou, X.: Finite element analysis of thermal stresses in ceramic/metal gradient thermal barrier coatings. J. Wuhan Univer. Tech. 20(3), 44–47 (2005)

    Article  Google Scholar 

  19. Bialas, M.: Finite element analysis of stress distribution in thermal barrier coatings. J. Surf. Coat. Tech. 202, 6002–6010 (2008)

    Article  Google Scholar 

  20. Tokovyy, Y., Ma, C.-C.: An analytical solution to the three-dimensional problem on elastic equilibrium of an exponentially-inhomogeneous layer. J. Mech. 31(5), 545–555 (2015)

    Article  Google Scholar 

  21. Kulchytsky-Zhyhail, R., Bajkowski, A.: Analytical and numerical methods of solution of three-dimensional problem of elasticity for functionally graded coated half-space. Int. J. Mech. Sci. 54(1), 105–112 (2012)

    Article  Google Scholar 

  22. Kudinov, V.A., Kuznetsova, A.E., Eremin, A.V., Kotova, E.V.: Analytical solutions of thermoelasticity problems for multilayer structures with variable properties. Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki. 1(30), 215–221 (2013). (in Russian)

    Article  Google Scholar 

  23. Tokovyy, Y.V., Kalynyak, B.M., Ma, C.-C.: Nonhomogeneous solids: integral equations approach. In: Hetnarski, R.B. (ed.) Encyclopedia of Thermal Stresses, vol. 7, pp. 3350–3356. Springer, Berlin (2014)

    Chapter  Google Scholar 

  24. Vatulyan, A.O., Nesterov, S.A.: Numerical implementation of an iterative scheme for solving inverse problems of thermoelasticity for inhomogeneous bodies with coatings (in Russian). Vychislitel’nyye Tekhnologii 22(5), 14–25 (2017)

    MATH  Google Scholar 

  25. Novichkov, Y.N.: On various models of the description of the deformation of multilayer structures. Tr. MEI 459, 40–47 (1980). (in Russian)

    Google Scholar 

  26. Novichkov, Yu.N.: Dynamics of layered structures (in Russian). Matematicheskiye metody i fiziko-mekhanicheskiye polya. 24, 41–46

  27. Shupikov, A.N., Smetankina, N.V.: Non-stationary vibration of multilayer plates of an uncanonical form. The elastic immersion. Int. J. Solids Struct 38(14), 2271–2290 (2001)

    Article  Google Scholar 

  28. Raddy, J.N., Chin, C.D.: Thermoelastic analysis of functionally graded cylinders and plates. J. Therm. Stress. 21, 593–626 (1998)

    Article  Google Scholar 

  29. Vatulyan, A.O., Plotnikov, D.K.: A model of indentation for a functionally graded strip. Doklady Phys. 64(4), 173–175 (2019)

    Article  ADS  Google Scholar 

  30. Novacki, V.: Dynamic Problems of Thermoelasticity. Mir, Moscow (1970). (Russian translation)

    Google Scholar 

  31. Vatul’yan, A.O., Nesterov, S.A.: Certain aspects of identification of the inhomogeneous prestressed state in thermoelastic bodies. J. Appl. Math. Mech. 81, 71–76 (2017)

    Article  MathSciNet  Google Scholar 

  32. Durbin, F.: Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. Comput. J. 17, 371–376 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Funding was provided by Russian Science Foundation (Grant No. 18-11-00069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rostislav Nedin.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Grant of the Russian Science Foundation (project No. 18-11-00069).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vatulyan, A., Nesterov, S. & Nedin, R. Regarding some thermoelastic models of “coating-substrate” system deformation. Continuum Mech. Thermodyn. 32, 1173–1186 (2020). https://doi.org/10.1007/s00161-019-00824-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00824-9

Keywords

Navigation