Skip to main content
Log in

Quasiconvex envelope for a model of finite elastoplasticity with one active slip system and linear hardening

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

An explicit characterization of the quasiconvex envelope of the condensed energy in a model for finite elastoplasticity is presented, both in two and in three spatial dimensions. A variational formulation of plasticity, which is appropriate for the first time step in a time discrete formulation of the evolution problem, is used, and it is assumed that only one slip system is active. The model includes a nonlinear elastic energy, which is invariant under SO(n), and an effective plastic contribution which is quadratic in the slip parameter. The quasiconvex envelope arises via the formation of first-order laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubry, S., Fago, M., Ortiz, M.: A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials. J. Comput. Methods Appl. Mech. Eng. 192, 2823–2843 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ball, J.M., Murat, F.: \(W^{1, p}\) quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58, 225–253 (1984)

    Article  MathSciNet  Google Scholar 

  3. Bartels, S., Carstensen, C., Hackl, K., Hoppe, U.: Effective relaxation for microstructure simulations: algorithms and applications. Comput. Methods Appl. Mech. Eng. 193, 5143–5175 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  4. Carstensen, C., Conti, S., Orlando, A.: Mixed analytical–numerical relaxation in finite single-slip crystal plasticity. Contin. Mech. Thermodyn. 20, 275–301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  5. Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 458, 299–317 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cicalese, M., Fusco, N.: A note on relaxation with constraints on the determinant. ESAIM: Cocv. http://cvgmt.sns.it/paper/3506/ (2017) (to appear)

  7. Conti, S.: Relaxation of single-slip single-crystal plasticity with linear hardening. In: Gumbsch, P. (ed.) Multiscale Materials Modeling, pp. 30–35. Fraunhofer IRB, Freiburg (2006)

    Google Scholar 

  8. Conti, S.: Quasiconvex functions incorporating volumetric constraints are rank-one convex. J. Math. Pures Appl. 90, 15–30 (2008)

    Article  MathSciNet  Google Scholar 

  9. Conti, S., Dolzmann, G.: Rank-one convexity of quasiconvex functions with determinant constraints (in preparation)

  10. Conti, S., Dolzmann, G.: On the theory of relaxation in nonlinear elasticity with constraints on the determinant. Arch. Ration. Mech. Anal. 217, 413–437 (2015)

    Article  MathSciNet  Google Scholar 

  11. Conti, S., Dolzmann, G.: Relaxation in crystal plasticity with three active slip systems. Contin. Mech. Thermodyn. 28, 1477–1494 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. Conti, S., Dolzmann, G.: Numerical study of microstructures in single-slip finite elastoplasticity. J. Optim. Theory Appl. (2018). https://doi.org/10.1007/s10957-018-01460-0

    Article  MATH  Google Scholar 

  13. Conti, S., Dolzmann, G.: Optimal laminates in single-slip elastoplasticity. Disc. Cont. Dyn. Syst. Ser. (2019) (in press)

  14. Conti, S., Dolzmann, G., Kreisbeck, C.: Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity. SIAM J. Math. Anal. 43, 2337–2353 (2011)

    Article  MathSciNet  Google Scholar 

  15. Conti, S., Dolzmann, G., Kreisbeck, C.: Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions. Discrete Contin. Dyn. Syst. Ser. 6, 1–16 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Conti, S., Theil, F.: Single-slip elastoplastic microstructures. Arch. Ration. Mech. Anal. 178, 125–148 (2005)

    Article  MathSciNet  Google Scholar 

  17. Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, vol. 78. Springer, Berlin (1989)

    Book  Google Scholar 

  18. Davoli, E., Francfort, G.A.: A critical revisiting of finite elasto-plasticity. SIAM J. Math. Anal. 47(1), 526–565 (2015)

    Article  MathSciNet  Google Scholar 

  19. Fonseca, I.: The lower quasiconvex envelope of the stored energy function for an elastic crystal. J. Math. Pures Appl. 67, 175–195 (1988)

    MathSciNet  MATH  Google Scholar 

  20. Kochmann, D., Hackl, K.: The evolution of laminates in finite crystal plasticity: a variational approach. Contin. Mech. Thermodyn. 23, 63–85 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  21. Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960)

    Article  MathSciNet  Google Scholar 

  22. Lee, E.H.: Elastic–plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969)

    Article  ADS  Google Scholar 

  23. Miehe, C., Lambrecht, M., Gürses, E.: Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: evolving deformation microstructures in finite plasticity. J. Mech. Phys. Solids 52, 2725–2769 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  24. Müller, S.: Variational models for microstructure and phase transitions. In: Bethuel F. et al. (eds.) Calculus of Variations and Geometric Evolution Problems. Springer Lecture Notes in Mathematics, vol. 1713, pp. 85–210. Springer (1999)

  25. Müller, S., Šverák, V.: Convex integration with constraints and applications to phase transitions and partial differential equations. J. Eur. Math. Soc. 1, 393–442 (1999)

    Article  MathSciNet  Google Scholar 

  26. Ortiz, M., Repetto, E.A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  27. Reina, C., Conti, S.: Kinematic description of crystal plasticity in the finite kinematic framework: a micromechanical understanding of \(F=F^e F^p\). J. Mech. Phys. Solids 67, 40–61 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 1060 “The mathematics of emergent effects”, Project A5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Conti .

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conti , S., Dolzmann, G. Quasiconvex envelope for a model of finite elastoplasticity with one active slip system and linear hardening. Continuum Mech. Thermodyn. 32, 1187–1196 (2020). https://doi.org/10.1007/s00161-019-00825-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00825-8

Keywords

Navigation