Skip to main content
Log in

Metal–insulator transition and small-to-large polaron crossover in \(\hbox {La}_{2}\hbox {NiO}_{4+\delta }/\hbox {BaTiO}_{3}\) composites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Structure and electrical resistivity of \((1 - x)\hbox {La}_{2}\hbox {NiO}_{4+\delta }/x\hbox {BaTiO}_{3}\) composites (\(x = 0.05, 0.1, 0.2, 0.3, 0.5\)) produced by combining the sol–gel and ceramic sintering methods have been investigated. Among the samples sintered at temperature \(1300^{\circ }\hbox {C}\) for 16 h, the metal–insulator transition (MIT) temperature of \(x = 0.1\) sample, which is \(T_{\mathrm{MI}} = 700~\hbox {K}\), is lower than the MIT temperature (800 K) of the pristine \(\hbox {La}_{2}\hbox {NiO}_{4+\delta }\) (LNO) perovskite. Reduction of resistivity of \(x \le 0.3\) composite is mainly due to decrease of the scattering of electrical carriers by composite large grain boundaries and the structural change of the LNO component. The temperature dependence of the resistivity of \((1 - x)\hbox {La}_{2}\hbox {NiO}_{4+\delta }/x\hbox {BaTiO}_{3}\) composites is well-explained by a two conducting component model consisting of small polarons (SP) and large polarons (LP). A crossover between SP and LP with increasing temperature is described by the probability volume fraction function f for SP and \(1 - f\) for LP, which are equal to 1/2 at transition temperature \(T_{\mathrm{MI}}\). The observed lowest resistivity \(\rho =11~\hbox {m}\Omega \) cm for \(x = 0.1\) sample corresponds to the lowest SP thermal activation energy \(E_{\mathrm{a}}\), the contributions of residual and phonon resistivities at \(T_{\mathrm{MI}}\). The MIT of these composites satisfies approximately the Mott criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mott N F 1974 Metal-insulator transitions (London: Taylor & Francis)

  2. Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039

    Article  CAS  Google Scholar 

  3. Huy N D, Cong T B and Morikawa Y 2018 J. Phys. Soc. Jpn. 87 114704

    Article  Google Scholar 

  4. Ishikawa K, Shibata W, Watanabe K, Isonaga T, Hashimoto M and Suzuki Y 1997 J. Solid State Chem. 131 275

    Article  CAS  Google Scholar 

  5. Escudero M J, Fuerte A and Daza L 2011 J. Power Sources 196 7245

    Article  CAS  Google Scholar 

  6. Chen M, Moon B M, Kim S H, Kim B H, Xu Q and Ahn B G 2012 Fuel Cells 12 86

    Article  CAS  Google Scholar 

  7. Anh Thu L T, Huong H T, Dinh N N, Chinh H D, Minh Hue D T, Kurisu M et al 2016 J. Sci. Technol. (Vietnam) 54 66

    Google Scholar 

  8. Jaime M, Lin P, Chun S H, Salamon M B, Dorsey P and Rubinstein M 1999 Phys. Rev. B 60 1028

    Article  CAS  Google Scholar 

  9. Rubinstein M 2000 J. Appl. Phys. 87 5019

    Article  CAS  Google Scholar 

  10. Phong P T, Khiem N V, Dai N V, Manh D H, Hong L V and Phuc N X 2009 J. Magn. Magn. Mater. 321 3330

    Article  CAS  Google Scholar 

  11. Hiral D S and Bhalodia J A 2017 AIP Conf. Proc. 1832 110014

    Article  Google Scholar 

  12. Anh Thu L T, Huong H T, Dinh N N, Chinh H D, Minh Hue D T, Dung N D et al 2015 VNU J. Sci.: Math. Phys. 31 24

  13. Jeon S-Y, Choi M-B, Hwang J-H, Wachsman E D and Song S-J 2011 J. Electrochem. Soc. 158 B476

    Article  CAS  Google Scholar 

  14. Mangalam R V K, Ray N, Waghmare U V, Sundaresan A and Rao C N R 2009 Solid State Commun. 149 1

    Article  CAS  Google Scholar 

  15. Aguadero A, Alonso J A, Martinez-Lope M J, Fernandez-Diaz M T, Escudero M J and Daza L 2006 J. Mater. Chem. 16 3402

    Article  CAS  Google Scholar 

  16. Odier P, Nigara Y and Coutures J 1985 J. Solid State Chem. 56 32

    Article  CAS  Google Scholar 

  17. Rodriguez-Carvajal J, Fernandez-Diaz M T and Martinez J L 1991 J. Phys.: Condens. Matter 3 3215

    CAS  Google Scholar 

  18. Al-Assiri M S and El-Desoky M M 2011 J. Alloys Compd. 509 8937

    Article  CAS  Google Scholar 

  19. Trang N T and Cong T B 2018 Adv. Nat. Sci.: Nanosci. Nanotechnol. 9 015012

    Google Scholar 

  20. Alexandrov A S, Bratkovsky A M and Kabanov V V 2006 Phys. Rev. Lett. 96 117003

    Article  CAS  Google Scholar 

  21. Yamada K, Omata T, Nakajima K, Hosoya S, Sumida T and Endoh Y 1992 Physica C 191 15

    Article  CAS  Google Scholar 

  22. Thanh T D, Van H T, Thu D T A, Bau L V, Dang N V, Nam D N H et al 2017 IEEE Trans. Mag. 53 8204904

    Article  Google Scholar 

  23. Cong T B, Tsuji T, Thao P X, Thanh P Q and Yamamura Y 2004 Physica B 352 18

    Article  CAS  Google Scholar 

  24. Lederer P and Mills D L 1968 Phys. Rev. 165 837

    Article  CAS  Google Scholar 

  25. Zhang J, Xu Y, Cao S, Cao G, Zhang Y and Jing C 2005 Phys. Rev. B 72 054410

    Article  Google Scholar 

  26. Austin I G and Mott N F 1969 Adv. Phys. 18 41

    Article  CAS  Google Scholar 

  27. Fabbri E, Bi L, Pergolesi D and Traversa E 2012 Adv. Mater. 24 195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.01-2015.92. Nguyen Ngoc Dinh would like to thank Vietnam National University for partial support under the Grant Number QG.16.04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B T Cong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thu, L.T.A., Dinh, N.N., Tuyen, N.V. et al. Metal–insulator transition and small-to-large polaron crossover in \(\hbox {La}_{2}\hbox {NiO}_{4+\delta }/\hbox {BaTiO}_{3}\) composites. Bull Mater Sci 43, 139 (2020). https://doi.org/10.1007/s12034-020-02125-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02125-3

Keywords

Navigation