Skip to main content

Advertisement

Log in

Impact of Se doping on optical and third-order nonlinear optical properties of spray pyrolysis fabricated CdS thin films for optoelectronics

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Cadmium sulphide is known to have tremendous applications towards optoelectronic and nonlinear devices. Hence, here we have facilely casted the CdS films with diverse Se contents through low-cost spray pyrolysis technique. XRD study defends mono-phase formation of CdS having hexagonal system at all Se doping contents. Scherrer equation was employed to evaluate crystallite size in range of 15–25 nm. Vibrational study reveals the presence of fundamental modes of vibration of hexagonal CdS. EDX and SEM mapping studies approve the existence of Se and its homogeneous distribution all over the film. SEM micrographs shows the nanoscale grains formation on film surface and the size is increasing with Se doping. Optical study revealed that the grown films are of optimal quality with transparency in range of 60–75% with low absorbance and reflectance values. The refractive index values are noted to varied from 1 to 2.7 with wavelength and noticed to be reduced on Se content in UV–Vis region. The reduction in direct and indirect energy gap was found from 2.46 to 2.34 eV and 2.21 to 1.96 eV, correspondingly due to Se. PL emission profile contains an emission band at 528, 529, 529, 530 and 546 nm for 0.0, 0.5, 1.0, 2.5, 5.0 wt% Se:CdS films. Dielectric constant and loss were estimated. The nonlinear refraction (n2) and absorption coefficient (β) and third-order nonlinear susceptibility \((\chi^{3} )\) values were determined using Z-scan and observed in order of 10–8 cm2/W, 10–4 cm/W and 10–3 esu, correspondingly. The high values of \(\chi^{3}\) propose the films for nonlinear applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Karthik, S. Pushpa, M. Madhukara Naik, M. Vinuth, Mater. Res. Innov. 24(2), 82–86 (2020)

    Google Scholar 

  2. A.A. Aboud, A. Mukherjee, N. Revaprasadu, A.N. Mohamed, J. Mater. Res. Technol. 8(2), 2021–2030 (2019)

    Google Scholar 

  3. R. Murugesan, S. Sivakumar, K. Karthik, P. Anandan, M. Haris, Appl. Phys. A 125, 281 (2019)

    ADS  Google Scholar 

  4. P. Samiyammal, K. Parasuraman, A.R. Balu, Superlattices Microstruct. 129, 28–39 (2019)

    ADS  Google Scholar 

  5. S. Yılmaz, İ. Polat, M. Tomakin, E. Bacaksız, Appl. Phys. A 125, 67 (2019)

    ADS  Google Scholar 

  6. I. Yahia, I. El Radaf, A. Salem, G. Sakr, J. Alloys Compd. 776, 1056–1062 (2019)

    Google Scholar 

  7. J. Lee, Thin Solid Films 451, 170–174 (2004)

    ADS  Google Scholar 

  8. H. Khallaf, G. Chai, O. Lupan, L. Chow, S. Park, A. Schulte, Appl. Surf. Sci. 255, 4129–4134 (2009)

    ADS  Google Scholar 

  9. M. Ristova, M. Ristov, Sol. Energy Mater. Sol. Cells 53, 95–102 (1998)

    Google Scholar 

  10. G. Perna, V. Capozzi, M. Ambrico, V. Augelli, T. Ligonzo, A. Minafra, L. Schiavulli, M. Pallara, Thin Solid Films 453–454, 187–194 (2004)

    Google Scholar 

  11. K. Liu, J. Zhang, X. Wu, B. Li, B. Li, Y. Lu, X. Fan, D. Shen, Phys. B Condens. Matter 389, 248–251 (2007)

    ADS  Google Scholar 

  12. A. Jafari, A. Zakaria, Z. Rizwan, M.S.M. Ghazali, Int. J. Mol. Sci. 12, 6320–6328 (2011)

    Google Scholar 

  13. S. Yılmaz, Appl. Surf. Sci. 357, 873–879 (2015)

    ADS  Google Scholar 

  14. A. Fernández-Pérez, C. Navarrete, P. Valenzuela, W. Gacitúa, E. Mosquera, H. Fernández, Thin Solid Films 623, 127–134 (2017)

    ADS  Google Scholar 

  15. T. Berus, J. Goc, M. Nowak, M. Oszwałdowski, M. Zimpel, Thin Solid Films 111, 351–366 (1984)

    ADS  Google Scholar 

  16. J. Goral, S.R. Kurtz, J. Olson, A. Kibbler, J. Electron. Mater. 19, 95–99 (1990)

    ADS  Google Scholar 

  17. Y. Gong, Z. Liu, A.R. Lupini, G. Shi, J. Lin, S. Najmaei, Z. Lin, A.L. Elías, A. Berkdemir, G. You, Nano Lett. 14, 442–449 (2013)

    ADS  Google Scholar 

  18. J. Henry, K. Mohanraj, S. Kannan, S. Barathan, G. Sivakumar, Eur. Phys. J. Appl. Phys. 61, 10301 (2013)

    ADS  Google Scholar 

  19. A. Pan, X. Wang, P. He, Q. Zhang, Q. Wan, M. Zacharias, X. Zhu, B. Zou, Nano Lett. 7, 2970–2975 (2007)

    ADS  Google Scholar 

  20. J.-W. Shi, D. Sun, Y. Zou, D. Ma, C. He, X. Ji, C. Niu, Chem. Eng. J. 364, 11–19 (2019)

    Google Scholar 

  21. M.G. Reyes-Banda, E. Regalado-Perez, M.I. Pintor-Monroy, C.A. Hernández-Gutiérrez, M.A. Quevedo-López, X. Mathew, Superlattices Microstruct. 133, 106219 (2019)

    Google Scholar 

  22. D. Yang, S. Xu, Q. Chen, W. Wang, Colloids Surf. A 299, 153–159 (2007)

    Google Scholar 

  23. N. Sankar, C. Sanjeeviraja, K. Ramachandran, J. Cryst. Growth 243, 117–123 (2002)

    ADS  Google Scholar 

  24. A. Kunioka, Y. Sakai, Solid State Electron. 8, 961–965 (1965)

    ADS  Google Scholar 

  25. A.A. Akl, A.S. Hassanien, Superlattices Microstruct. 85, 67–81 (2015)

    ADS  Google Scholar 

  26. F. Iacomi, M. Purica, E. Budianu, D. Macovei, Synthesis of the transparent and conductive CdS thin films for optoelectronic devices applications. In CAS 2005 Proceedings. 2005 International Semiconductor Conference, 2005.2005, vol. 161, pp. 161–164

  27. A. Khan, M. Shkir, M.A. Manthrammel, V. Ganesh, I.S. Yahia, M. Ahmed, A.M. El-Toni, A. Aldalbahi, H. Ghaithan, S. AlFaify, Ceram. Int. 45, 10133–10141 (2019)

    Google Scholar 

  28. R. Bairy, A. Jayarama, G.K. Shivakumar, S.D. Kulkarni, S.R. Maidur, P.S. Patil, Phys. B Condens. Matter 555, 145–151 (2019)

    ADS  Google Scholar 

  29. M. Shkir, S. AlFaify, Sci. Rep. 7, 16091 (2017)

    ADS  Google Scholar 

  30. M. Shkir, M.T. Khan, S. AlFaify, Appl. Nanosci. 9(7), 1417–1426 (2019)

    ADS  Google Scholar 

  31. H.L. Lee, I.A. Mohammed, M. Belmahi, M.B. Assouar, H. Rinnert, M. Alnot, Materials 3, 2069–2086 (2010)

    ADS  Google Scholar 

  32. C. Hu, X. Zeng, J. Cui, H. Chen, J. Lu, J. Phys. Chem. C 117, 20998–21005 (2013)

    Google Scholar 

  33. H.I. Salim, O.I. Olusola, A.A. Ojo, K.A. Urasov, M.B. Dergacheva, I.M. Dharmadasa, J. Mater. Sci.: Mater. Electron. 27, 6786–6799 (2016)

    Google Scholar 

  34. A. Petruhins, J. Lu, L. Hultman, J. Rosen, Mater. Res. Lett. 7, 446–452 (2019)

    Google Scholar 

  35. M. Shkir, I.M. Ashraf, S. AlFaify, A.M. El-Toni, M. Ahmed, A. Khan, Ceram. Int. 46(4), 4652–4663 (2020)

    Google Scholar 

  36. M. Shkir, Z.R. Khan, M. Anis, S.S. Shaikh, S. AlFaify, Chin. J. Phys. 63, 51–62 (2020)

    Google Scholar 

  37. M. Shkir, M. Anis, S.S. Shaikh, S. AlFaify, Superlattices Microstruct. 133, 106202 (2019)

    Google Scholar 

  38. M. Shkir, S. Shaikh, S. AlFaify, J. Mater. Sci. Mater. Electron. 30, 17469–17480 (2019)

    Google Scholar 

  39. H. Ding, Y. Li, J. Lu, K. Luo, K. Chen, M. Li, P.O.Å. Persson, L. Hultman, P. Eklund, S. Du, Z. Huang, Z. Chai, H. Wang, P. Huang, Q. Huang, Mater. Res. Lett. 7, 510–516 (2019)

    Google Scholar 

  40. V. Soleimanian, M. Saeedi, A. Mokhtari, Mater. Sci. Semicond. Process. 30, 118–127 (2015)

    Google Scholar 

  41. A. Kaushal, D. Kaur, Sol. Energy Mater. Sol. Cells 93, 193–198 (2009)

    Google Scholar 

  42. S.D. Gunjal, Y.B. Khollam, S.A. Arote, S.R. Jadkar, P.N. Shelke, K.C. Mohite, Macromol. Symposia 347, 9–15 (2015)

    Google Scholar 

  43. A.H. Rubel, J. Podder, J. Bangl. Acad. Sci. 39, 25–30 (2015)

    Google Scholar 

  44. A.A. Aboud, A. Mukherjee, N. Revaprasadu, A.N. Mohamed, J. Mater. Res. Technol. 8, 2021–2030 (2019)

    Google Scholar 

  45. M. Shkir, A. Khan, A.M. El-Toni, A. Aldalbahi, I.S. Yahia, S. AlFaify, J. Phys. Chem. Solids 130, 189–196 (2019)

    ADS  Google Scholar 

  46. M.T. Khan, M. Shkir, A. Almohammedi, S. AlFaify, Solid State Sci. 90, 95–101 (2019)

    ADS  Google Scholar 

  47. S. AlFaify, M. Shkir, Opt. Mater. 88, 417–423 (2019)

    ADS  Google Scholar 

  48. S. Alfaify, M. Shkir, J. Nanoelectron. Optoelectron. 14, 255–260 (2019)

    Google Scholar 

  49. A. Cortes, H. Gómez, R.E. Marotti, G. Riveros, E.A. Dalchiele, Sol. Energy Mater. Sol. Cells 82, 21–34 (2004)

    Google Scholar 

  50. O. Zelaya-Angel, L. Hernandez, O. de Melo, J.J. Alvarado-Gil, R. Lozada-Morales, C. Falcony, H. Vargas, R. Ramirez-Bon, Vacuum 46, 1083–1085 (1995)

    ADS  Google Scholar 

  51. C. Grovenor, Microelectronic materials (Adam Hilger, Bristol, 1989)

    Google Scholar 

  52. M. Shkir, S. AlFaify, J. Mater. Res. 34, 2765–2774 (2019)

    ADS  Google Scholar 

  53. Y. Akaltun, M.A. Yıldırım, A. Ateş, M. Yıldırım, Opt. Commun. 284, 2307–2311 (2011)

    ADS  Google Scholar 

  54. S.-Y. Kuo, W.-C. Chen, F.-I. Lai, C.-P. Cheng, H.-C. Kuo, S.-C. Wang, W.-F. Hsieh, J. Cryst. Growth 287, 78–84 (2006)

    ADS  Google Scholar 

  55. S. Yılmaz, İ. Polat, M. Tomakin, T. Küçükömeroğlu, S.B. Töreli, E. Bacaksız, Appl. Phys. A 124, 502–508 (2018)

    ADS  Google Scholar 

  56. S. Yılmaz, İ. Polat, M. Tomakin, S. Töreli, T. Küçükömeroğlu, E. Bacaksız, J. Mater. Sci. Mater. Electron. 29, 14774–14782 (2018)

    Google Scholar 

  57. M. Shkir, J. Mater. Res. 31, 1046–1055 (2016)

    ADS  Google Scholar 

  58. M. Shkir, I. Ashraf, K.V. Chandekar, I. Yahia, A. Khan, H. Algarni, S. AlFaify, Sens. Actuators A 301, 111749 (2020)

    Google Scholar 

  59. M. Shkir, M. Anis, S. Shafik, M.A. Manthrammel, M. Sayeed, M.S. Hamdy, S. AlFaify, Physica E Low Dimens. Syst. Nanostruct. 118, 113955 (2020)

    Google Scholar 

  60. K. Usha, R. Sivakumar, C. Sanjeeviraja, J. Appl. Phys. 114, 123501 (2013)

    ADS  Google Scholar 

  61. D. Panda, T.-Y. Tseng, Thin Solid Films 531, 1–20 (2013)

    ADS  Google Scholar 

  62. M.V. Fischetti, W.G. Vandenberghe, Dielectric Properties of Semiconductors, Advanced Physics of Electron Transport in Semiconductors and Nanostructures (Springer, Berlin, 2016), pp. 223–251

    Google Scholar 

  63. M.-S. Kim, K.-G. Yim, J.-S. Son, J.-Y. Leem, Bull. Korean Chem. Soc. 33, 1235–1241 (2012)

    Google Scholar 

  64. M. Shkir, I.M. Ashraf, K.V. Chandekar, I.S. Yahia, A. Khan, H. Algarni, S. AlFaify, Sens. Actuators A Phys. 301, 111749 (2020)

    Google Scholar 

  65. P.P. Sahay, R.K. Nath, S. Tewari, Cryst. Res. Technol. 42, 275–280 (2007)

    Google Scholar 

  66. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, Quantum Electron. IEEE J. 26, 760–769 (1990)

    ADS  Google Scholar 

  67. M.A. Manthrammel, M. Shkir, M. Anis, S.S. Shaikh, H.E. Ali, S. AlFaify, Opt. Mater. 100, 109696 (2020)

    Google Scholar 

  68. Z.S. Fadhul, E.A. Ali, S.R. Maidur, P.S. Patil, M. Shkir, F.Z. Henari, J. Nonlinear Opt. Phys. Mater. 27, 1850012 (2018)

    ADS  Google Scholar 

  69. M. Shkir, P. Patil, M. Arora, S. AlFaify, H. Algarni, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 173, 445–456 (2017)

    ADS  Google Scholar 

  70. M. Anis, M. Shkir, M.I. Baig, S.P. Ramteke, G.G. Muley, S. AlFaify, H.A. Ghramh, J. Mol. Struct. 1170, 151–159 (2018)

    ADS  Google Scholar 

  71. M. Anis, G. Muley, M. Shkir, S. Alfaify, H. Ghramh, Mater. Sci. Pol. 36, 662–667 (2018)

    ADS  Google Scholar 

  72. R.B. Kulkarni, M. Anis, S. Hussaini, M.D. Shirsat, Mater. Res. Express 5, 036204 (2018)

    ADS  Google Scholar 

  73. S.R. Maidur, P.S. Patil, S.V. Rao, M. Shkir, S. Dharmaprakash, Opt. Laser Technol. 97, 219–228 (2017)

    ADS  Google Scholar 

  74. R. Ganeev, A. Ryasnyansky, S.R. Kamalov, M. Kodirov, T. Usmanov, J. Phys. D Appl. Phys. 34, 1602 (2001)

    ADS  Google Scholar 

  75. R.A. Ganeev, M. Baba, M. Morita, D. Rau, H. Fujii, A.I. Ryasnyansky, N. Ishizawa, M. Suzuki, H. Kuroda, J. Opt. A Pure Appl. Opt. 6, 447–453 (2004)

    ADS  Google Scholar 

  76. N. Venkatram, D.N. Rao, M.A. Akundi, Opt. Express 13, 867–872 (2005)

    ADS  Google Scholar 

  77. W. Cun-Xiu, F. Shi-Shu, G. Yu-Zong, Chin. Phys. Lett. 26, 097804 (2009)

    ADS  Google Scholar 

  78. Z.R. Khan, M. Shkir, V. Ganesh, S. AlFaify, I.S. Yahia, H.Y. Zahran, J. Electron. Mater. 47, 5386–5395 (2018)

    ADS  Google Scholar 

  79. M. Shkir, M. Arif, V. Ganesh, M.A. Manthrammel, A. Singh, I.S. Yahia, S.R. Maidur, P.S. Patil, S. AlFaify, J. Mol. Struct. 1173, 375–384 (2018)

    ADS  Google Scholar 

  80. Z.R. Khan, M. Shkir, A.S. Alshammari, V. Ganesh, S. AlFaify, M. Gandouzi, J. Electron. Mater. 48, 1122–1132 (2019)

    ADS  Google Scholar 

  81. I. El Radaf, T.A. Hameed, I. Yahia, Mater. Res. Express 5, 066416 (2018)

    ADS  Google Scholar 

  82. M. Arif, M. Shkir, S. AlFaify, A. Sanger, P.M. Vilarinho, A. Singh, Opt. Laser Technol. 112, 539–547 (2019)

    ADS  Google Scholar 

  83. F. Abrinaei, M. Shirazi, J. Mater. Sci. Mater. Electron. 28, 17541–17550 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under Grant no. R.G.P2/95/41.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohd. Shkir or S. AlFaify.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to show.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkir, M., Anis, M., Shaikh, S.S. et al. Impact of Se doping on optical and third-order nonlinear optical properties of spray pyrolysis fabricated CdS thin films for optoelectronics. Appl. Phys. B 126, 121 (2020). https://doi.org/10.1007/s00340-020-07472-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07472-x

Navigation