Skip to main content

Advertisement

Log in

Prediction and Identification of Epitopes in the Emy162 Antigen of Echinococcus multilocularis

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Introduction

Alveolar echinococcosis (AE) is a zoonotic disease caused by the parasitism of Echinococcus multilocularis larvae in the intermediate host or the final host. This study aims to identify and analyze the B-cell and T-cell (Th1, Th2 and Th17) epitopes of E. multilocularis antigen Emy162.

Methods

(1) The secondary structural characteristics of the Emy162 protein were predicted by bioinformatics software to further predict the potential T- and B-cell epitopes. (2) The dominant antigen epitopes were detected by ELISA through the reaction of patient serum with small B-cell antigen peptide and assessing the proliferation of splenic lymphocytes of mice immunized with Emy162. (3) The expression of cytokines in splenic lymphocytes of mice stimulated by small T-cell antigen peptides was detected by ELISA, ELISpot and flow cytometry to enable the identification of the T-cell epitopes.

Results

(1) The high-scored T-cell epitopes were located at positions E7-13, E36-41, E80-89, E87-96, E97-106 and E129-139, while B-cell epitopes were located at positions E7-13, E19-27, E28-36, E37-48, E78-83, E101-109, E112-121 and E129-139. (2) The three advanced antigen epitopes of Emy162 were E19-27, E112-121 and E129-139. (3) The four Th1 advanced antigen epitopes of Emy162 were E7-13, E36-41, E80-89 and E129-139. The three Th2 advanced antigen epitopes were E36-41, E87-96 and E97-106. The three Th17 advanced antigen epitopes were E36-41, E87-96 and E97-106.

Conclusion

(1) The Emy162 protein has advanced antigenicity and numerous potential epitopes. Six T-cell and eight B-cell dominant epitopes were revealed using bioinformatics methods. (2) There are three dominant B-cell epitopes, four dominant Th1 epitopes, three dominant Th2 epitopes, and three dominant Th17 epitopes in the Emy162 antigen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cadavid Restrepo AM, Yang YR, McManus DP, Gray DJ, Barnes TS, Williams GM, Soares Magalhães RJ, Clements ACA (2018) Environmental risk factors and changing spatial patterns of human seropositivity for Echinococcus spp. in Xiji County, Ningxia Hui autonomous region, China. Parasit Vectors 11(1):159. https://doi.org/10.1186/s13071-018-2764-1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nunnari G, Pinzone MR, Gruttadauria S, Celesia BM, Madeddu G, Malaguarnera G, Pavone P, Cappellani A, Cacopardo B (2012) Hepatic echinococcosis: clinical and therapeutic aspects. World J Gastroenterol 18(13):1448–1458. https://doi.org/10.3748/wjg.v18.i13.1448

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rebmann T, Zelicoff A (2012) Vaccination against influenza: role and limitations in pandemic intervention plans. Expert Rev Vaccines 11(8):1009–1019. https://doi.org/10.1586/erv.12.63

    Article  CAS  PubMed  Google Scholar 

  4. Wang F, Ye B (2016) Bioinformatics analysis and construction of phylogenetic tree of aquaporins from Echinococcus granulosus. Parasitol Res 115(9):3499–3511. https://doi.org/10.1007/s00436-016-5114-2

    Article  PubMed  Google Scholar 

  5. Zhang W, Wang S, Mcmanus DP (2014) Echinococcus granulosus\r, genomics: a new dawn for improved diagnosis, treatment, and control of echinococcosis. Parasite 21:66. https://doi.org/10.1051/parasite/2014066

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ma X, Zhou X, Zhu Y, Li Y, Wang H, Mamuti W, Li Y, Wen H, Ding J (2013) The prediction of T- and B-combined epitope and tertiary structure of the Eg95 antigen of Echinococcus granulosus. Exp Ther Med 6(3):657–662. https://doi.org/10.3892/etm.2013.1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saha S, Raghava GP (2010) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1):40–48. https://doi.org/10.1002/prot.21078

    Article  CAS  Google Scholar 

  8. Li HB, Zhang JY, He YF, Chen L, Li B, Liu KY, Yang WC, Zhao Z, Zou QM, Wu C (2012) Systemic immunization with an epitope-based vaccine elicits a Th1-biased response and provides protection against Helicobacter pylori in mice. Vaccine 31:120–126. https://doi.org/10.1016/j.vaccine.2012.10.091

    Article  CAS  PubMed  Google Scholar 

  9. Mollica A, Stefanucci A, Costante R (2013) Strategies for developing tuberculosis vaccines: emerging approaches. Curr Drug Targets 14(9):938–951. https://doi.org/10.2174/1389450111314090002

    Article  CAS  PubMed  Google Scholar 

  10. Hazama S, Maeda K, Oka M (2012) Epitope peptide vaccine with oncoantigen for cancer and its biomarker. Nihon Rinsho 70(12):2189–2193

    PubMed  Google Scholar 

  11. Ben-Yedidia T, Arnon R (2005) Towards an epitope-based human vaccine for influenza. Hum Vaccin 1(3):95–101. https://doi.org/10.4161/hv.1.3.1851

    Article  CAS  PubMed  Google Scholar 

  12. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412. https://doi.org/10.1371/journal.pbio.1000412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11(6):681–684. https://doi.org/10.1093/bioinformatics/11.6.681

    Article  CAS  PubMed  Google Scholar 

  14. Cao LG, Ling H, Cai HL, Zhao FJ, Ouyang DM, Chen SF, Wu YM, Zeng TB (2015) Prediction and identification of B-cell epitopes of Treponema pallidumrepeat protein F. Chin J Zoonoses 31(10):919–922. https://doi.org/10.3969/j.issn.1002-2694.2015.10.005

    Article  CAS  Google Scholar 

  15. Zeng SL, Ruan ZX, Tang JM, Liao LS, Sun J, Lin QY, Lv JQ, Ye YY, Zhu H, Li XQ, Wang HY, Yang JX, Hua QY (2015) Prediction, synthesis and establishment of indirect ELISA method for N protein B cell epitope of pestilence of ruminants virus. Progress Vet Med 36(8):40–44

    Google Scholar 

  16. Li WJ, Zou JQ, Han XX, Tian ZH, Liu J, Li HD (2015) Establishment of a method for purifying and culturing mouse spleen B lymphocyte. China Tissue Eng Res 19(2):207–212. https://doi.org/10.3969/j.issn.2095-4344.2015.02.009

    Article  CAS  Google Scholar 

  17. Li Y, Liu X, Zhu Y, Zhou X, Cao C, Hu X, Ma H, Wen H, Ma X, Ding JB (2013) Bioinformatic prediction of epitopes in the Emy162 antigen of Echinococcus multilocularis. Exper Therapeut Med 6(2):335–340. https://doi.org/10.3892/etm.2013.1142

    Article  CAS  Google Scholar 

  18. Thompson RC (2017) Biology and systematics of Echinococcus. Adv Parasitol 95:65–109. https://doi.org/10.1016/bs.apar.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  19. Craig PS, Hegglin D, Lightowlers MW, Torgerson PR, Wang Q (2017) Chapter two—echinococcosis: control and prevention. Adv Parasitol 96:55–158. https://doi.org/10.1016/bs.apar.2016.09.002

    Article  CAS  PubMed  Google Scholar 

  20. Siles-Lucas M, Casulli A, Conraths FJ, Müller N (2017) Laboratory diagnosis of Echinococcus spp. in human patients and infected animals. Adv Parasitol 96:159–257. https://doi.org/10.1016/bs.apar.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  21. Esmaelizad M, Ahmadian G, Aghaiypour K, Shamsara M, Paykari H, Tebianian M (2013) Induction of protective T-helper 1 immune responses against Echinococcus granulosus, in mice by a multi-T-cell epitope antigen based on five proteins. Mem Inst Oswaldo Cruz 108(4):408–413. https://doi.org/10.1590/S0074-0276108042013003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng H, Zhang W, Zhang L, Zhang Z, Li J, Lu G, Zhu Y, Wang Y, Huang Y, Liu J, Kang H, Chen J, Wang L, Chen A, Yu S, Gao Z, Jin L, Gu W, Wang Z, Zhao L, Shi B, Wen H, Lin R, Jones MK, Brejova B, Vinar T, Zhao G, McManus DP, Chen Z, Zhou Y, Wang S (2013) The genome of the hydatid tapeworm Echinococcus granulosus. Nat Genet 45:1168–1175. https://doi.org/10.1038/ng.2757

    Article  CAS  PubMed  Google Scholar 

  23. Ranasinghe SL, Fischer K, Zhang W, Gobert GN, McManus DP (2015) Cloning and characterization of two potent Kunitz type protease inhibitors from Echinococcus granulosus. PLoS Negl Trop Dis 9(12):e0004268. https://doi.org/10.1371/journal.pntd.0004268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang J, Müller S, Lin R, Siffert M, Vuitton DA, Wen H, Gottstein B (2017) Depletion of FoxP3(+) Tregs improves control of larval Echinococcus multilocularis infection by promoting co-stimulation and Th1/17 immunity. Immun Inflamm Dis 5:435–447. https://doi.org/10.1002/iid3.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang J, Vuitton DA, Muller N, Hemphill A, Spiliotis M, Blagosklonov O, Grandgirard D, Leib SL, Shalev I, Levy G, Lu X, Lin R, Wen H, Gottstein B (2015) Deletion of fibrinogen-like protein 2 (FGL-2), a novel CD4+ CD25+ Treg effector molecule, leads to improved control of Echinococcus multilocularis infection in mice. PLoS Negl Trop Dis 9(5):e0003755. https://doi.org/10.1371/journal.pntd.0003755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gottstein B, Soboslay P, Ortona E, Wang J, Siracusano A, Vuitton D (2017) Immunology of alveolar and cystic echinococcosis (AE and CE). Adv Parasitol 96:1–54. https://doi.org/10.1016/bs.apar.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  27. Lightowlers MW, Heath DD (2004) Immunity and vaccine control of Echinococcus granulosus infection in animal intermediate hosts. Parassitologia 46:27–31

    CAS  PubMed  Google Scholar 

  28. Li ZF, Zhang S (2008) The progress and prospect of fundamental research of the spleen. J Xi'an Jiao Tong Univ (Med Sci Ed) 29(1):1–6

    Google Scholar 

  29. Ma XM, Ding JB (2013) Medical immunology. Tsinghua University Press, Beijing, pp 96–97

    Google Scholar 

  30. Wardah W, Khan MGM, Sharma A, Rashid MA (2019) Protein secondary structure prediction using neural networks and deep learning: a review. Comput Biol Chem 81:1–8. https://doi.org/10.1016/j.compbiolchem.2019.107093

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funding by Qinghai Provincial Science and Technology Department Project (2014-ZJ-719).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Ning Fan.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, MQ., Tang, F., Wang, HJ. et al. Prediction and Identification of Epitopes in the Emy162 Antigen of Echinococcus multilocularis. Acta Parasit. 65, 919–928 (2020). https://doi.org/10.2478/s11686-020-00231-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11686-020-00231-0

Keywords

Navigation