Skip to main content
Log in

Raman Spectroscopy Diagnostics of the Local Time Profile of an Ultrasound Beam in Water

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

It has been demonstrated for the first time that pulsed laser Raman spectroscopy can be used for diagnostics of a local acoustic pressure profile with a peak pressure drop of 50 MPa and a carrier frequency of 2.0 MHz in the focus of an ultrasound beam propagating in water. A 527-nm 10-ns laser pulse has been focused into the waist of the ultrasound beam at an angle of 90°. Backscattered photons have been recorded in a gated spectrum analyzer. It has been found that the Raman spectra at the times corresponding to the maximum and minimum acoustic pressures are significantly different. This feature has been used for point-to-point reconstruction of the acoustic pressure profile; for this purpose, the delay between the ultrasound and laser pulses is consequently increased with a step of 50 ns. It has been shown that, within the measurement error, the resulting changes in the position of the center of the stretching OH vibration band of water molecules in the Raman spectrum reproduce the acoustic pressure profile directly measured using a PVDF hydrophone at the laser sensing point. The results obtained can be used to develop a new method for remote diagnostics of the time profile of acoustic pressure and monitoring the local dynamic of the compression-tension processes in water up to critical pressures corresponding to the cavitation rupture, when the use of the hydrophone can lead to its damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. P. Brysev, L. M. Krutyansky, and V. L. Preobrazhensky, Phys. Usp. 41, 793 (1998).

    Article  ADS  Google Scholar 

  2. V. A. Shutilov, Sov. Phys. Acoust. 5, 230 (1959).

    Google Scholar 

  3. I. L. Raskovskaya, JETP Lett. 106, 131 (2017).

    Article  ADS  Google Scholar 

  4. A. P. Brysev, F. V. Bunkin, M. F. Hamilton, L. M. Krutyansky, K. B. Cunningham, V. L. Preobrazhensky, Yu. V. Pyl’nov, A. D. Stakhovsky, and S. J. Young-house, Acoust. Phys. 44, 641 (1998).

    ADS  Google Scholar 

  5. T. Kawamoto, S. Ochiai, and H. Kagi, J. Chem. Phys. 120, 5867 (2004).

    Article  ADS  Google Scholar 

  6. A. F. Bunkin, V. K. Klinkov, V. A. Luk’yanchenko, and S. M. Pershin, Phys. Wave Phenom. 12, 180 (2004).

    Google Scholar 

  7. A. P. Brysev, A. F. Bunkin, R. V. Klopotov, L. M. Krutyansky, A. A. Nurmatov, and S. M. Pershin, Opt. Spectrosc. 93, 282 (2002).

    Article  ADS  Google Scholar 

  8. N. D. Sokolov, in Hydrogen Bond, Ed. by N. D. Sokolov (Nauka, Moscow, 1981), p. 63 [in Russian].

  9. A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. L. Lushnikov, A. V. Marchenko, E. G. Morozov, S. M. Pershin, and R. N. Yulmetov, Appl. Opt. 51, 5477 (2012).

    Article  ADS  Google Scholar 

  10. V. N. Lednev, M. Ya. Grishin, S. M. Pershin, and A. F. Bunkin, Opt. Lett. 41, 4625 (2016).

    Article  ADS  Google Scholar 

  11. S. M. Pershin and A. F. Bunkin, Bull. Russ. Acad. Sci.: Phys. 7, 217 (1999).

    Google Scholar 

  12. D. R. Mittelstein, J. Ye, E. F. Schibber, A. Roychoudhury, L. T. Martinez, M. H. Fekrazad, M. Ortiz, P. P. Lee, M. G. Shapiro, and M. Gharib, Appl. Phys. Lett. 116, 013701 (2020). https://doi.org/10.1063/L5128627

    Article  ADS  Google Scholar 

  13. A. D. Maxwell, B. W. Cunitz, W. Kreider, O. A. Sapozhnikov, R. S. Hsi, J. D. Harper, M. R. Bailey, and M. D. Sorensen, J. Urol. 193, 338 (2015). https://doi.org/10.1016/j.juro.2014.08.009

    Article  Google Scholar 

  14. S. M. Pershin, L. M. Krutyansky, and V. A. Luk’yanchenko, JETP Lett. 94, 121 (2011). https://doi.org/10.1134/S0021364011140116

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We express our gratitude to L.M. Krutyansky for useful consultations and discussions.

Funding

This work was partially supported by the Russian Science Foundation (project no. 19-19-00712) and by the International Associated Laboratory for Critical and Supercritical Phenomena in Functional Electronics, Acoustics and Fluidics (LIA LICS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. M. Pershin or A. P. Brysev.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 7, pp. 464–468.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pershin, S.M., Brysev, A.P., Grishin, M.Y. et al. Raman Spectroscopy Diagnostics of the Local Time Profile of an Ultrasound Beam in Water. Jetp Lett. 111, 392–396 (2020). https://doi.org/10.1134/S0021364020070073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020070073

Navigation