Skip to main content
Log in

Spectra of Protons and Alpha Particles and Their Comparison in the NUCLEON Experiment Data

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The aim of the NUCLEON space experiment was to measure spectra of high-energy cosmic rays. Direct measurements of energy spectra of protons and nuclei of cosmic rays which allow separating particles in charge are required to solve important astrophysical problems. The satellite was launched on December 26, 2014, and operated for three years. Measured spectra of protons and alpha particles in the energy range of 2–500 TeV per particle have been presented. The results have been analyzed and compared to other experimental data for lower energies. The ratio of fluxes of protons and alpha particles is nearly constant in a wide range of magnetic rigidities (3–100 TV). Thus, the behavior of the ratio of the spectra is significantly different from a similar dependence in the region of lower magnetic rigidities measured in other experiments. One of the possible explanation of this effect can be given within a model with one close source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. S. Ahn, E. S. Seo, J. Adams, et al. (ATIC Collab.), Adv. Space Res. 37, 1950 (2006).

    Article  ADS  Google Scholar 

  2. A. D. Panov, J. H. Adams, Jr., H. S. Ahn, et al. (ATIC Collab.), Adv. Space Res. 37, 1944 (2006).

    Article  ADS  Google Scholar 

  3. A. D. Panov, J. H. Adams, Jr., H. S. Ahn (ATIC Collab.), Bull. Russ. Acad. Sci.: Phys. 71, 494 (2007).

    Article  Google Scholar 

  4. Y. S. Yoon, H. S. Ahn, P. S. Allison, et al. (CREAM Collab.), Astrophys. J. 728, 122 (2011).

    Article  ADS  Google Scholar 

  5. H. S. Ahn, P. Allison, M. G. Bagliesi, et al. (CREAM Collab.), Astrophys. J. 707, 593 (2009).

    Article  ADS  Google Scholar 

  6. Y. S. Yoon, T. Anderson, A. Barrau, et al. (CREAM Collab.), Astrophys. J. 839, 5 (2017).

    Article  ADS  Google Scholar 

  7. A. Obermeier, M. Ave, P. Boyle, Ch. Hoppner, J. Horandel, and D. Muller, Astrophys. J. 742, 14 (2011).

    Article  ADS  Google Scholar 

  8. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, et al. (PAMELA Collab.), Science (Washington, DC, U. S.) 332, 69 (2011).

    Article  ADS  Google Scholar 

  9. M. Aguilar, D. Aisa, B. Alpat, et al. (AMS Collab.), Phys. Rev. Lett. 115, 211101 (2015).

    Article  ADS  Google Scholar 

  10. M. Aguilar, D. Aisa, B. Alpat, et al. (AMS Collab.), Phys. Rev. Lett. 114, 171103 (2015).

    Article  ADS  Google Scholar 

  11. N. Grigorov, V. Nesterov, and I. Savenko, in Space Research XII (Akademie, Berlin, 1972), Vol. 2, p. 1617.

    Google Scholar 

  12. I. P. Ivanenko, V. Ya. Shestoperov, L. O. Chikova, I. M. Fateeva, L. A. Khein, D. M. Podorozhnyi, I. D. Rapoport, G. A. Samsonov, V. A. Sobinyakov, A. N. Turundaevskii, and I. V. Yashin, in Proceedings of the 23 International Cosmic Ray Conference, Ed. by R. B. Hicks, D. A. Leahy, and D. Venkatesan (Calgary, Canada, 1993), Vol. 2, p. 17.

  13. A. Turundaevskiy and D. Podorozhnyi, Adv. Space Res. 60, 1578 (2017).

    Article  ADS  Google Scholar 

  14. O. Adriani, Y. Akaike, K. Asano, et al. (CALET Collab.), Phys. Rev. Lett. 122, 181102 (2019).

    Article  ADS  Google Scholar 

  15. P. Brogi, P. Marrocchesi, P. Maestro, and N. Mori, in Proceedings of the 34th International Cosmic Ray Conference, Hague, Netherlands, 2016, PoS (ICRC2015), 595 (2016).

  16. Q. An, R. Asfandiyarov, P. Azzarello, et al. (DAMPE Collab.), Sci. Adv. 5, eaax3793 (2019).

    Article  ADS  Google Scholar 

  17. X. Wu, G. Ambrosi, R. Asfandiyarov, et al. (DAMPE Collab.), in Proceedings of the 34 International Cosmic Ray Conference, Hague, Netherlands, 2016, PoS (ICRC2015), 1192 (2016).

  18. S. C. Kang, Y. Amare, T. Anderson, et al. (CREAM Collab.), Adv. Space Res. 64, 2564 (2019).

    Article  ADS  Google Scholar 

  19. G. F. Krymskii, Sov. Phys. Dokl. 22, 327 (1977).

    ADS  MathSciNet  Google Scholar 

  20. V. L. Ginzburg and S. I. Syrovatskii, The Origin of Cosmic Rays (Pergamon, Oxford, 1964).

    Book  Google Scholar 

  21. V. L. Ginzburg and V. S. Ptuskin, Phys. Usp. 18, 931, (1975).

    Article  ADS  Google Scholar 

  22. R. D. Blandford and J. P. Ostriker, Astrophys. J. 237, 793 (1980).

    Article  ADS  Google Scholar 

  23. R. Blandford and D. Eichler, Phys. Rep. 154, 1 (1987).

    Article  ADS  Google Scholar 

  24. W. I. Axford, in Proceedings of the 17 International Cosmic Ray Conference, Paris, France (1981), Vol. 1, p. 155.

  25. T. K. Gaisser, Cosmic Rays and Particle Physics (Cambridge Univ. Press, New York, 1990).

    Google Scholar 

  26. V. S. Ptuskin, Phys. Usp. 50, 534 (2007).

    Article  ADS  Google Scholar 

  27. S. Thoudam and J. R. Horandel, J. Phys.: Conf. Ser. 632, 012026 (2015).

    Google Scholar 

  28. Y. Ohira and K. Ioka, Astrophys. J. Lett. 729, L13 (2011).

    Article  ADS  Google Scholar 

  29. V. I. Zatsepin and N. V. Sokolskaya, Astron. Astrophys. 458, 1 (2006).

    Article  ADS  Google Scholar 

  30. Y. Keum and P. Salati, Pramana-J. Phys. 86, 369 (2016).

    Article  ADS  Google Scholar 

  31. N. Tomassetti, Astrophys. J. Lett. 815, L1 (2015).

    Article  ADS  Google Scholar 

  32. S. Thoudam and J. R. Horandel, Mon. Not. R. Astron. Soc. 421, 1209 (2012).

    Article  ADS  Google Scholar 

  33. S. Thoudam and J. R. Horandel, Mon. Not. R. Astron. Soc. 435, 2532 (2013).

    Article  ADS  Google Scholar 

  34. M. Boezio, V. Bonvicini, P. Schiavon, et al. (CAPRICE Collab.), Astropart. Phys. 19, 583 (2003).

    Article  ADS  Google Scholar 

  35. S. Haino, T. Sanuki, K. Abe, et al. (BESS Collab.), Phys. Lett. B 594, 35 (2004).

    Article  ADS  Google Scholar 

  36. T. Sanuki, Nucl. Phys. B Suppl. 145, 132 (2005).

    Article  Google Scholar 

  37. E. S. Seo, Astropart Phys. 39–40, 76 (2012).

  38. N. A. Korotkova, D. M. Podorozhnyi, E. B. Postnikov, T. M. Roganova, L. G. Sveshnikova, and A. N. Turundaevsky, Phys. At. Nucl. 65, 852 (2002).

    Article  Google Scholar 

  39. J. Adams, G. Bashindzhagyan, P. Bashindzhagyan, et al., Adv. Space Res. 27, 829 (2001).

    Article  ADS  Google Scholar 

  40. J. Adams, G. Bashindzhagyan, A. Chilingaryan, et al., AIP Conf. Proc. 504, 175 (2000).

    Article  ADS  Google Scholar 

  41. E. B. Postnikov, G. L. Bashindzhagyan, N. A. Korotkova, D. M. Podorozhny, T. N. Roganova, L. G. Sveshnikova, and A. N. Turundaevsky, Izv. Akad. Nauk, Ser. Fiz. 66, 1634 (2002).

    Google Scholar 

  42. E. Atkin, V. Bulatov, V. Dorokhov, et al. (NUCLEON Collab.), Nucl. Instrum. Methods Phys. Res., Sect. A 770, 189 (2015).

    Article  ADS  Google Scholar 

  43. E. Atkin, V. Bulatov, V. Dorokhov, et al. (NUCLEON Collab.), EPJ Web of Conf. 105, 01002–p1 (2015).

    Article  Google Scholar 

  44. E. Atkin, V. Bulatov, V. Dorokhov, et al. (NUCLEON Collab.), Astropart. Phys. 90, 64 (2017).

    Article  ADS  Google Scholar 

  45. E. Atkin, V. Bulatov, V. Dorokhov, et al. (NUCLEON Collab.), J. Cosmol. Astropart. Phys. 2017, 20 (2017).

    Article  Google Scholar 

  46. E. Atkin, V. Bulatov, V. Dorokhov, et al. (NUCLEON Collab.), JETP Lett. 108, 5 (2018).

    Article  ADS  Google Scholar 

  47. E. V. Atkin, V. L. Bulatov, O. A. Vasiliev, et al. (NUCLEON Collab.), Astron. Rep. 63, 66 (2019).

    Article  ADS  Google Scholar 

  48. V. Grebenyuk, D. Karmanov, I. Kovalev, I. Kudryashov, A. Kurganov, A. Panov, D. Podorozhny, A. Tkachenko, L. Tkachev, A. Turundaevskiy, O. Vasiliev, and A. Voronin, Adv. Space Res. 64, 2546 (2019).

    Article  ADS  Google Scholar 

  49. V. V. Prosin, I. I. Astapov, P. A. Bezyazeekov, et al. (Tunka Collab.), Bull. Russ. Acad. Sci.: Phys. 83, 1016 (2019).

    Article  Google Scholar 

  50. R. Alfaro, C. Alvarez, J. D. Alvarez, et al. (HAWC Collab.), Phys. Rev. D 96, 122001 (2017).

    Article  ADS  Google Scholar 

  51. I. De Mitri, EPJ Web of Conf. 99, 08003 (2015).

    Article  Google Scholar 

  52. E. Atkin, V. Bulatov, V. Dorokhov, et al. (NUCLEON Collab.), Bull. Russ. Acad. Sci.: Phys. 83, 977 (2019).

    Article  Google Scholar 

  53. M. Aguilar, L. Ali Cavasonza, B. Alpat, et al. (AMS Collab.), Phys. Rev. Lett. 119, 251101 (2017).

    Article  ADS  Google Scholar 

  54. V. Ptuskin, V. Zirakashvili, and E.-S. Seo, Astrophys. J. 718, 31 (2010).

    Article  ADS  Google Scholar 

  55. V. Ptuskin and V. Zirakashvili, Astron. Astrophys. 403, 1 (2003).

    Article  ADS  Google Scholar 

  56. V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, and V. Opanasenko, in Contemporary High Performance Computing: From Petascale toward Exascale (CRC, Boca Raton, FL, 2013), p. 283.

    Google Scholar 

Download references

Funding

This work was supported by the Roscosmos State Corporation for Space Activities, by the Russian Academy of Sciences, and by the Supercomputer Center, Moscow State University [56].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Turundaevskiy.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 7, pp. 435–440.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmanov, D.E., Kovalev, I.M., Kudryashov, I.A. et al. Spectra of Protons and Alpha Particles and Their Comparison in the NUCLEON Experiment Data. Jetp Lett. 111, 363–367 (2020). https://doi.org/10.1134/S002136402007005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136402007005X

Navigation