Skip to main content
Log in

Discrete Vortices in Systems of Coupled Nonlinear Oscillators: Numerical Results for an Electric Model

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Vortex coherent structures on arrays of nonlinear oscillators joined by weak links into topologically nontrivial two-dimensional discrete manifolds have been theoretically studied. A circuit of nonlinear electric oscillators coupled by relatively weak capacitances has been considered as a possible physical implementation of such objects. Numerical experiments have shown that a time-monochromatic external force applied to several oscillators leads to the formation of long-lived and nontrivially interacting vortices in the system against the quasistationary background in a wide range of parameters. The dynamics of vortices depends on the method of “coupling” of the opposite sides of a rectangular array by links, which determines the topology of the resulting manifold (torus, Klein bottle, projective plane, Möbius strip, ring, or disk).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Pismen, Vortices in Nonlinear Fields (Clarendon, Oxford, 1999).

    MATH  Google Scholar 

  2. C. J. Pethick and H. Smith, Bose—Einstein Condensation in Dilute Gases (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  3. L. P. Pitaevskii and S. Stringari, Bose—Einstein Condensation (Oxford Univ. Press, Oxford, 2003).

    MATH  Google Scholar 

  4. P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-González, The Defocusing Nonlinear Schrödinger Equation: From Dark Solitons and Vortices to Vortex Rings (SIAM, Philadelphia, 2015).

    Book  MATH  Google Scholar 

  5. B. Y. Rubinstein and L. M. Pismen, Phys. D (Amsterdam, Neth.) 78, 1 (1994).

    Article  ADS  Google Scholar 

  6. A. A. Svidzinsky and A. L. Fetter, Phys. Rev. A 62, 063617 (2000).

    Article  ADS  Google Scholar 

  7. A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009).

    Article  ADS  Google Scholar 

  8. V. P. Ruban, Phys. Rev. E 64, 036305 (2001).

    Article  ADS  Google Scholar 

  9. J. Garcia-Ripoll and V. Perez-Garcia, Phys. Rev. A 64, 053611 (2001).

    Article  ADS  Google Scholar 

  10. J. R. Anglin, Phys. Rev. A 65, 063611 (2002).

    Article  ADS  Google Scholar 

  11. P. Rosenbusch, V. Bretin, and J. Dalibard, Phys. Rev. Lett. 89, 200403 (2002).

    Article  ADS  Google Scholar 

  12. A. Aftalion and I. Danaila, Phys. Rev. A 68, 023603 (2003).

    Article  ADS  Google Scholar 

  13. T.-L. Horng, S.-C. Gou, and T.-C. Lin, Phys. Rev. A 74, 041603(R) (2006).

    Article  ADS  Google Scholar 

  14. V. A. Mironov and L. A. Smirnov, JETP Lett. 95, 549 (2012).

    Article  ADS  Google Scholar 

  15. S. Serafini, M. Barbiero, M. Debortoli, S. Donadello, F. Larcher, F. Dalfovo, G. Lamporesi, and G. Ferrari, Phys. Rev. Lett. 115, 170402 (2015).

    Article  ADS  Google Scholar 

  16. S. Serafini, L. Galantucci, E. Iseni, T. Bienaime, R. N. Bisset, C. F. Barenghi, F. Dalfovo, G. Lamporesi, and G. Ferrari, Phys. Rev. X 7, 021031 (2017).

    Google Scholar 

  17. C. Ticknor, W. Wang, and P. G. Kevrekidis, Phys. Rev. A 98, 033609 (2018).

    Article  ADS  Google Scholar 

  18. V. P. Ruban, JETP Lett. 108, 605 (2018).

    Article  ADS  Google Scholar 

  19. C. Ticknor, V. P. Ruban, and P. G. Kevrekidis, Phys. Rev. A 99, 063604 (2019).

    Article  ADS  Google Scholar 

  20. B. A. Malomed and P. G. Kevrekidis, Phys. Rev. E 64, 026601 (2001).

    Article  ADS  Google Scholar 

  21. P. G. Kevrekidis, B. A. Malomed, and Yu. B. Gaididei, Phys. Rev. E 66, 016609 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  22. P. G. Kevrekidis, B. A. Malomed, D. J. Frantzeskakis, and R. Carretero-Gonzalez, Phys. Rev. Lett. 93, 080403 (2004).

    Article  ADS  Google Scholar 

  23. P. G. Kevrekidis, B. A. Malomed, Zh. Chen, and D. J. Frantzeskakis, Phys. Rev. E 70, 056612 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  24. D. E. Pelinovsky, P. G. Kevrekidis, and D. J. Frantzeskakis, Phys. D (Amsterdam, Neth.) 212, 20 (2005).

    Article  ADS  Google Scholar 

  25. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Ya. Silberberg, Phys. Rep. 463, 1 (2008).

    Article  ADS  Google Scholar 

  26. J. Cuevas, G. James, P. G. Kevrekidis, and K. J. H. Law, Phys. D (Amsterdam, Neth.) 238, 1422 (2009).

    Article  ADS  Google Scholar 

  27. Ya. V. Kartashov, B. A. Malomed, and L. Torner, Rev. Mod. Phys. 83, 247 (2011).

    Article  ADS  Google Scholar 

  28. M. Lapine, I. V. Shadrivov, and Yu. S. Kivshar, Rev. Mod. Phys. 86, 1093 (2014).

    Article  ADS  Google Scholar 

  29. V. P. Ruban, Phys. Rev. E 100, 012205 (2019).

    Article  ADS  Google Scholar 

  30. N. N. Rosanov, N. V. Vysotina, A. N. Shatsev, I. V. Shadrivov, and Yu. S. Kivshar’, JETP Lett. 93, 743 (2011).

    Article  ADS  Google Scholar 

  31. R. Hirota and K. Suzuki, J. Phys. Soc. Jpn. 28, 1366 (1970).

    Article  ADS  Google Scholar 

  32. R. Hirota and K. Suzuki, Proc. IEEE 61, 1483 (1973).

    Article  Google Scholar 

  33. A. C. Hicks, A. K. Common, and M. I. Sobhy, Phys. D (Amsterdam, Neth.) 95, 167 (1996).

    Article  ADS  Google Scholar 

  34. A. C. Singer and A. V. Oppenheim, Int. J. Bifurcat. Chaos 9, 571 (1999).

    Article  Google Scholar 

  35. D. Cai, N. Gronbech-Jensen, A. R. Bishop, A. T. Findikoglu, and D. Reagor, Phys. D (Amsterdam, Neth.) 123, 291 (1998).

    Article  ADS  Google Scholar 

  36. T. Kofane, B. Michaux, and M. Remoissenet, J. Phys. C: Solid State Phys. 21, 1395 (1988).

    Article  ADS  Google Scholar 

  37. P. Marquie, J. M. Bilbault, and M. Remoissenet, Phys. Rev. E 49, 828 (1994).

    Article  ADS  Google Scholar 

  38. P. Marquie, J. M. Bilbault, and M. Remoissenet, Phys. Rev. E 51, 6127 (1995).

    Article  ADS  Google Scholar 

  39. V. A. Makarov, E. del Rio, W. Ebeling, and M. G. Velarde, Phys. Rev. E 64, 036601 (2001).

    Article  ADS  Google Scholar 

  40. D. Yemele, P. Marquie, and J. M. Bilbault, Phys. Rev. E 68, 016605 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  41. L. Q. English, F. Palmero, A. J. Sievers, P. G. Kevrekidis, and D. H. Barnak, Phys. Rev. E 81, 046605 (2010).

    Article  ADS  Google Scholar 

  42. F. Palmero, L. Q. English, J. Cuevas, R. Carretero-Gonzalez, and P. G. Kevrekidis, Phys. Rev. E 84, 026605 (2011).

    Article  ADS  Google Scholar 

  43. L. Q. English, F. Palmero, J. F. Stormes, J. Cuevas, R. Carretero-Gonzalez, and P. G. Kevrekidis, Phys. Rev. E 88, 022912 (2013).

    Article  ADS  Google Scholar 

  44. F. Palmero, L. Q. English, X.-L. Chen, W. Li, J. Cuevas-Maraver, and P. G. Kevrekidis, Phys. Rev. E 99, 032206 (2019).

    Article  ADS  Google Scholar 

  45. V. P. Ruban, arXiv:1910.07827.

  46. C. J. G. Meyers, C. R. Freeze, S. Stemmer, and R. A. York, Appl. Phys. Lett. 109, 112902 (2016).

    Article  ADS  Google Scholar 

  47. Y. Shen, P. G. Kevrekidis, G. P. Veldes, D. J. Frantzeskakis, D. DiMarzio, X. Lan, and V. Radisic, Phys. Rev. E 95, 032223 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  48. F. J. Munoz, S. K. Turitsyn, Yu. S. Kivshar, and M. I. Molina, Phys. Rev. A 95, 033833 (2017).

    Article  ADS  Google Scholar 

  49. A. P. Slobozhanyuk, P. V. Kapitanova, I. V. Shadrivov, P. A. Belov, and Yu. S. Kivshar’, JETP Lett. 95, 613 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Ruban.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 7, pp. 455–461.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruban, V.P. Discrete Vortices in Systems of Coupled Nonlinear Oscillators: Numerical Results for an Electric Model. Jetp Lett. 111, 383–388 (2020). https://doi.org/10.1134/S0021364020070097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020070097

Navigation