Skip to main content
Log in

Upper Critical Field of a Two-Band SrFe2 − xNixAs2 Superconductor

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The upper critical field of an iron-based SrFe2 − xNixAs2 superconductor single crystal is measured for the first time in longitudinal and transverse magnetic fields up to 16 T in the basal ab plane and to it along the c axis. The Hc2(0) values are 18 and 25 T for Hc and Hab, respectively. The anisotropy of the upper critical field γ(T) = Habc2 / Hcc2 decreases monotonically to 1.4 with decreasing temperature. The temperature dependence of Hc2 is not described fully by the Werthamer–Helfand–Hohenberg model taking into account the influence of orbital and spin paramagnetic effects. However, an effective two-band model reproduces well the measured temperature dependence. This indicates the two-band nature of this superconductor, where one of the bands is almost isotropic. According to the two-band model approximation, the contribution from the anisotropic band dominates near Tc, whereas the main contribution at low temperatures comes from the isotropic band with a lower diffusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Article  Google Scholar 

  2. H. Hosono, A. Yamamoto, H. Hiramatsu, and Y. Ma, Mater. Today 21, 278 (2018).

    Article  Google Scholar 

  3. K. V. Frolov, I. S. Lyubutin, D. A. Chareev, and M. Abdel-Hafiez, JETP Lett. 110, 562 (2019).

    Article  ADS  Google Scholar 

  4. J. P. Sun, G. Z. Ye, P. Shahi, J.-Q. Yan, K. Matsuura, H. Kontani, G. M. Zhang, Q. Zhou, B. C. Sales, T. Shibauchi, Y. Uwatoko, D. J. Singh, and J.-G. Cheng, Phys. Rev. Lett. 118, 147004 (2017).

    Article  ADS  Google Scholar 

  5. B. Lei, J. H. Cui, Z. J. Xiang, C. Shang, N. Z. Wang, G. J. Ye, X. G. Luo, T. Wu, Z. Sun, and X. H. Chen, Phys. Rev. Lett. 116, 077002 (2016).

    Article  ADS  Google Scholar 

  6. H.-H. Kuo and I. R. Fisher, Phys. Rev. Lett. 112, 227001 (2014).

    Article  ADS  Google Scholar 

  7. J.-P. Reid, A. Juneau-Fecteau, R. T. Gordon, et al., Supercond. Sci. Technol. 25, 084013 (2012).

    Article  ADS  Google Scholar 

  8. T. E. Kuzmicheva, A. V. Muratov, S. A. Kuzmichev, A. V. Sadakov, Yu. A. Aleshchenko, V. A. Vlasenko, V. P. Martovitsky, K. S. Pervakov, Yu. F. Eltsev, and V. M. Pudalov, Phys. Usp. 60, 419 (2017).

    Article  ADS  Google Scholar 

  9. V. A. Vlasenko, O. A. Sobolevskiy, A. V. Sadakov, K. S. Pervakov, S. Yu. Gavrilkin, A. V. Dik, and Yu. F. Eltsev, JETP Lett. 107, 119 (2018).

    Article  Google Scholar 

  10. H. Q. Luo, P. Cheng, Z. S. Wang, H. Yang, Y. Jia, L. Fang, C. Ren, L. Shan, and H. H. Wen, Phys. C (Amsterdam, Neth.) 469, 477 (2009).

    Article  ADS  Google Scholar 

  11. L. Y. Vinnikov, I. S. Veshchunov, M. S. Sidel’nikov, V. S. Stolyarov, S. V. Egorov, O. V. Skryabina, W. Jiao, G. Cao, and T. Tamegai, JETP Lett. 109, 521 (2019).

    Article  ADS  Google Scholar 

  12. M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).

    Article  ADS  Google Scholar 

  13. B. Shen, P. Cheng, Z. Wang, L. Fang, C. Ren, L. Shan, and H.-H. Wen, Phys. Rev. B 81, 014503 (2010).

    Article  ADS  Google Scholar 

  14. E. Arushanov, S. Levcenko, G. Fuchs, B. Holzapfel, S.-L. Drechsler, and L. Schultz, Phys. C (Amsterdam, Neth.) 471, 237 (2011).

    Article  ADS  Google Scholar 

  15. F. Han, X. Zhu, P. Cheng, G. Mu, Y. Jia, L. Fang, Y. Wang, H. Luo, B. Zeng, B. Shen, L. Shan, C. Ren, and H.-H. Wen, Phys. Rev. B 80, 024506 (2009).

    Article  ADS  Google Scholar 

  16. A. Gurevich, Rep. Prog. Phys. 74, 124501 (2011).

    Article  ADS  Google Scholar 

  17. N. P. Butch, S. R. Saha, X. H. Zhang, K. Kirshenbaum, R. L. Greene, and J. Paglione, Phys. Rev. B 81, 024518 (2010).

    Article  ADS  Google Scholar 

  18. Yu. F. Eltsev, K. S. Pervakov, V. A. Vlasenko, S. Yu. Gavrilkin, E. P. Khlybov, and V. M. Pudalov, Phys. Usp. 57, 827 (2014).

    Article  ADS  Google Scholar 

  19. N. R. Werthamer, E. Helfand, and P. C. Hohemberg, Phys. Rev. 147, 295 (1966).

    Article  ADS  Google Scholar 

  20. G. Fuchs, S.-L. Drechsler, N. Kozlova, et al., New J. Phys. 11, 075007 (2009).

    Article  ADS  Google Scholar 

  21. A. Gurevich, Phys. Rev. B 67, 184515 (2003).

    Article  ADS  Google Scholar 

  22. Z. Wang, T. Xie, E. Kampert, T. Förster, X. Lu, R. Zhang, D. Gong, S. Li, T. Herrmannsdörfer, J. Wosnitza, and H. Luo, Phys. Rev. B 92, 174509 (2015).

    Article  ADS  Google Scholar 

  23. Z. Wang, J. Yuan, J. Wosnitza, H. Zhou, Y. Huang, K. Jin, F. Zhou, X. Dong, and Z. Zhao, J. Phys.: Condens. Matter 29, 025701 (2017).

    ADS  Google Scholar 

  24. R. Hu, E. D. Mun, M. M. Altarawneh, C. H. Mielke, V. S. Zapf, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B 85, 064511 (2012).

    Article  ADS  Google Scholar 

  25. F. Hunte, J. Jaroszynski, A. Gurevich, D. C. Larbalestier, R. Jin, A. S. Sefat, M. A. McGuire, B. C. Sales, D. K. Christen, and D. Mandrus, Nature (London, U.K.) 453, 903 (2008).

    Article  ADS  Google Scholar 

  26. T. E. Kuzmicheva, S. A. Kuzmichev, K. S. Pervakov, V. M. Pudalov, and N. D. Zhigadlo, Phys. Rev. B 95, 094507 (2017).

    Article  ADS  Google Scholar 

  27. T. E. Kuzmicheva, S. A. Kuzmichev, and N. D. Zhigadlo, Phys. Rev. B 100, 144504 (2019).

    Article  ADS  Google Scholar 

  28. S. Ghannadzadeh, J. D. Wright, F. R. Foronda, S. J. Blundell, S. J. Clarke, and P. A. Goddard, Phys. Rev. B 89, 054502 (2014).

    Article  ADS  Google Scholar 

  29. M. Zehetmayer and H. W. Weber, Phys. Rev. B 82, 014524 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The measurements were performed on the equipment of the Shared Facility Centre for Studies of HTS and Other Strongly Correlated Materials, Lebedev Physical Institute, Russian Academy of Sciences.

Funding

The work was supported in part by the Ministry of Science and Higher Education of the Russian Federation (project no. 0023-2019-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Vlasenko.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 7, pp. 475–479.

Supplemental Material to the article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maltsev, E.I., Vlasenko, V.A., Sobolevskii, O.A. et al. Upper Critical Field of a Two-Band SrFe2 − xNixAs2 Superconductor. Jetp Lett. 111, 403–407 (2020). https://doi.org/10.1134/S0021364020070061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020070061

Navigation