Skip to main content
Log in

General uniqueness results for large solutions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We give a series of very general sufficient conditions in order to ensure the uniqueness of positive large solutions for \(-\Delta u+f(x,u)=0\) in a bounded domain \(\Omega \) where \(f:{{\overline{\Omega }}}\times {\mathbb {R}}\mapsto {\mathbb {R}}_+\) is a continuous function, such that \(f(x,0)=0\) for \(x\in {{\overline{\Omega }}}\), and \(f(x,r)>0\) for x in a neighborhood of \(\partial \Omega \) and all \(r>0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bandle, C., Marcus, M.: Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior. J. Anal. Math. 58, 9–24 (1992)

    Article  MathSciNet  Google Scholar 

  2. Cano-Casanova, S., López-Gómez, J.: Blow-up rates of radially symmetric large solutions. J. Math. Anal. Appl. 352, 166–174 (2009)

    Article  MathSciNet  Google Scholar 

  3. Cirstea, F.C., Radulescu, V.: Existence and uniqueness of blow-up solutions for a class of logistic equations. Commun. Contemp. Math. 4, 559–586 (2002)

    Article  MathSciNet  Google Scholar 

  4. Cirstea, F.C., Radulescu, V.: Solutions with boundary blow-up for a class of nonlinear elliptic problems. Houston J. Math. 29, 821–829 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Costin, O., Dupaigne, L.: Boundary blow-up solutions in the unit ball: asymptotics, uniqueness and symmetry. J. Differ. Equ. 249, 931–964 (2010)

    Article  MathSciNet  Google Scholar 

  6. Costin, O., Dupaigne, L., Goubet, O.: Uniqueness of large solutions. J. Math. Anal. Appl. 395, 806–812 (2012)

    Article  MathSciNet  Google Scholar 

  7. Du, Y., Huang, Q.: Blow-up solutions for a class of semilinear elliptic and parabolic equations. SIAM J. Math. Anal. 31, 1–18 (1999)

    Article  MathSciNet  Google Scholar 

  8. Dumont, S., Dupaigne, L., Goubet, O., Radulescu, V.: Back to the Keller–Osserman condition for boundary blow-up solutions. Adv. Nonlinear Stud. 7, 271–298 (2007)

    Article  MathSciNet  Google Scholar 

  9. Evans, L.C., Gariepy, R.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  10. García-Melián, J., Letelier, R., Sabina de Lis, J.C.: Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up. Proc. Am. Math. Soc. 129, 3593–3602 (2001)

    Article  MathSciNet  Google Scholar 

  11. Gilbarg, D., Trudinger, N.S.: Partial Differential Equations of Second Orderd, 2nd edn. Springer, Berlin (1983)

    MATH  Google Scholar 

  12. Keller, J.B.: On solutions of \(\Delta u = f(u)\). Commun. Pure Appl. Math. X, 503–510 (1957)

    Article  Google Scholar 

  13. Labutin, D.: Wiener regularity for large solutions of nonlinear equations. Ark. Mat. 41, 307–339 (2003)

    Article  MathSciNet  Google Scholar 

  14. López-Gómez, J.: Large solutions, metasolutions, and asymptotic behavior of the regular positive solutions of a class of sublinear parabolic problems. Electron. J. Differ. Equ. Conf. 05, 135–171 (2000)

    MATH  Google Scholar 

  15. López-Gómez, J.: The boundary blow-up rate of large solutions. J. Differ. Equ. 195, 25–45 (2003)

    Article  MathSciNet  Google Scholar 

  16. López-Gómez, J.: Optimal uniqueness theorems and exact blow-up rates of large solutions. J. Differ. Equ. 224, 385–439 (2006)

    Article  MathSciNet  Google Scholar 

  17. López-Gómez, J.: Uniqueness of radially symetric large solutions. Discrete Contin. Dyn. Syst. Suppl. 2007, 677–686 (2007)

    MATH  Google Scholar 

  18. López-Gómez, J.: Metasolutions of Parabolic Problems in Population Dynamics. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  19. López-Gómez, J., Maire, L.: Uniqueness of large positive solutions for a class of radially symmetric cooperative systems. J. Math. Anal. Appl. 435, 1738–1752 (2016)

    Article  MathSciNet  Google Scholar 

  20. López-Gómez, J., Maire, L.: Uniqueness of large positive solutions. Z. Angew. Math. Phys. 68, 86 (2017)

    Article  MathSciNet  Google Scholar 

  21. López-Gómez, J., Maire, L.: Multiplicity of large solutions for quasi-monotone pulse-type nonlinearities. J. Math. Anal. Appl. 459, 490–505 (2018)

    Article  MathSciNet  Google Scholar 

  22. López-Gómez, J., Maire, L.: Uniqueness of large solutions for non-monotone nonlinearities. Nonlinear Anal. RWA 47, 291–305 (2019)

    Article  MathSciNet  Google Scholar 

  23. Marcus, M., Véron, L.: Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations. Ann. Inst. Henri Poincaré 14, 237–274 (1997)

    Article  MathSciNet  Google Scholar 

  24. Marcus, M., Véron, L.: The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption. Commun. Pure Appl. Math. LVI, 0689–0731 (2003)

    Article  MathSciNet  Google Scholar 

  25. Marcus, M., Véron, L.: Existence and uniqueness results for large solutions of general nonlinear elliptic equations. J. Evol. Equ. 3, 637–652 (2004)

    Article  MathSciNet  Google Scholar 

  26. Marcus, M., Véron, L.: Boundary trace of positive solutions of nonlinear elliptic inequalities. Ann. Scuola Norm. Sup Pisa CL. Sci. V, 453–533 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Marcus, M., Véron, L.: Maximal solutions of semilinear elliptic equations with locally integrable forcing term. Isr. J. Math. 152, 323–348 (2006)

    Article  MathSciNet  Google Scholar 

  28. Marcus, M., Véron, L.: Maximal solutions for \(-\Delta u + u^q =0\) in open and finely open sets. J. Math. Pures Appl. 91, 256–295 (2009)

    Article  MathSciNet  Google Scholar 

  29. Mohammed, A., Porru, G.: Large solutions to non-divergence structure semilinear elliptic equations with inhomogeneous term. Adv. Nonlinear Anal. 8, 517–532 (2019)

    Article  MathSciNet  Google Scholar 

  30. Osserman, R.: On the inequality \(\Delta u \ge f(u)\). Pac. J. Math. 7, 1641–1647 (1957)

    Article  Google Scholar 

  31. Ouyang, T., Xie, Z.: The uniqueness of blow-up for radially symmetric semilinear elliptic equations. Nonlinear Anal. 64, 2129–2142 (2006)

    Article  MathSciNet  Google Scholar 

  32. Ouyang, T., Xie, Z.: The exact boundary blow-up rate of large solutions for semilinear elliptic problems. Nonlinear Anal. 68, 2791–2800 (2008)

    Article  MathSciNet  Google Scholar 

  33. Shishkov, A., Véron, L.: Diffusion versus absorption in semilinear elliptic equations. J. Math. Anal. Appl. 352, 206–217 (2009)

    Article  MathSciNet  Google Scholar 

  34. Véron, L.: Semilinear elliptic equations with uniform blow up on the boundary. J. D’Anal. Math. 59, 231–250 (1992)

    Article  MathSciNet  Google Scholar 

  35. Véron, L.: Large solutions of elliptic equations with strong absorption. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 63, pp. 453–464. Birkhauser Verlag, Basel (2005)

  36. Xie, Z.: Uniqueness and blow-up rate of large solutions for elliptic equation \(-\Delta u={\lambda }u-b(x)h(u)\). J. Differ. Equ. 247, 344–363 (2009)

    Article  MathSciNet  Google Scholar 

  37. Zhang, Z., Ma, Y., Mi, L., Li, X.: Blow-up rates of large solutions for elliptic equations. J. Differ. Equ. 249, 180–199 (2010)

    Article  MathSciNet  Google Scholar 

  38. Zhang, Z., Mi, L.: Blow-up rates of large solutions for semilinear elliptic equations. Commun. Pure Appl. Anal. 10, 1733–1745 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Véron.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 On the Keller–Osserman condition

The next result shows how imposing the Keller–Osserman condition on the associated function g is stronger than imposing it on f.

Proposition 4.1

There are increasing functions f that satisfy (KO) and such that the corresponding function g does not.

Proof

To construct such an example, one can consider any function f such that

$$\begin{aligned} u^2\le f(u)\le u^3 \quad \hbox {and}\quad f(u)=f(\min I_n) \quad \hbox {for all}\;\; u\in I_n, \end{aligned}$$

where \(I_n\), \(n\ge 1\), is an arbitrary sequence of intervals such that

$$\begin{aligned} \lim _{n\rightarrow +\infty } (\max I_n-\min I_n) =+\infty \quad \hbox {and}\quad \max I_n <\min I_{n+1}\quad \hbox {for all}\;\; n\in \mathbb {N}. \end{aligned}$$

By the properties of \(u^2\) and \(u^3\), such a sequence of intervals exists. For this choice we have that, for any given \(\ell >0\) and \(u\in I_n\), \([u,\ell +u]\subset I_n\) for sufficiently large \(n>0\) and hence,

$$\begin{aligned} f(\ell +u)-f(u)=0. \end{aligned}$$

Thus, \(g(\ell )=0\). Therefore, \(g\equiv 0\), which does not satisfy (KO). \(\square \)

1.2 On the strong barrier property

The general problem of finding conditions so that the strong barrier property occurs is open. We give below some cases where it holds and a case where it does not. They all deal with nonlinearity of the form

$$\begin{aligned} g(x,r)={{\mathfrak {a}}}(x){\tilde{g}}(r) \end{aligned}$$
(4.1)

where \({{\mathfrak {a}}}\in C({{\overline{\Omega }}})\) is nonnegative and positive near \(\partial \Omega \) and \({\tilde{g}}:{\mathbb {R}}_+\mapsto {\mathbb {R}}_+\) is continuous and nondecreasing, vanishes at 0 and satisfies (KO).

1. If \({{\mathfrak {a}}}>0\) on \(\partial \Omega \), then the Keller–Osserman condition holds in \({{\overline{{{\mathcal {V}}}}}}\), where \({{\mathcal {V}}}\) is a neighborhood of \(\partial \Omega \), because the function \({{\mathfrak {a}}}\) can be extended to \(\Omega ^c\) as a continuous and positive function by Whitney embedding theorem (see e.g., [9]). It is a completely open problem to find out sufficient conditions in the case where \({{\mathfrak {a}}}>0\) vanishes on the boundary.

2. If \(\partial \Omega \) is \(C^2\) and, for some \(\alpha >0\),

$$\begin{aligned} g(x,r)\ge d^\alpha (x)u^p \end{aligned}$$

it is proved in [24] that the strong barrier property holds. When \(\partial \Omega \) is Lipschitz, the distance function loses its intrinsic interest and has often to be replaced by the first eigenfunction \(\phi _1\) of \(-\Delta \) in \(H^{1}_0(\Omega )\). In such case, we conjecture that the strong barrier property holds if

$$\begin{aligned} g(x,r)\ge \phi _1^\alpha (x)u^p \end{aligned}$$

for some \(\alpha >0\).

3. If \(\partial \Omega \) is \(C^2\) and

$$\begin{aligned} g(x,r)\le \mathrm{e}^{-\frac{\kappa }{d(x)}}r^p \end{aligned}$$

with \(\kappa >0\) and \(p>1\), then the strong barrier property does not hold. Indeed, it is proved in [26] that, for every \(a\in \partial \Omega \) and \(k>0\), the problem

$$\begin{aligned} \begin{array} {lll} -\Delta u+\mathrm{e}^{-\frac{\kappa }{d(x)}}u^p=0&{}\quad \text {in }\;\Omega ,\\ u=k\delta _a &{}\quad { \text {on }}\;\partial \Omega , \end{array} \end{aligned}$$
(4.2)

admits a unique positive solution, \(v_{a,k}\). Furthermore, the nonlinearity \(r\mapsto r^p\) satisfies the Keller–Osserman condition. Hence, the equation

$$\begin{aligned} -\Delta u+\mathrm{e}^{-\frac{\kappa }{d(x)}}u^p=0\quad \text {in }\;\Omega \end{aligned}$$
(4.3)

admits a minimal, \(u^\mathrm{min}\), and a maximal, \(u^\mathrm{max}\), large solution (probably they are equal). However, \(v_{a,k}\uparrow u^\mathrm{min}\) when \(k\rightarrow \infty \). Arguing by contradiction, assume that the equation satisfies the strong barrier property at \(z\in \partial \Omega \). Then, there exists \(r>0\) such that the solution \(u:=u_n\) of the problem

$$\begin{aligned} \begin{array} {lll} -\Delta u+\mathrm{e}^{-\frac{\kappa }{d(x)}}u^p=0 &{}\quad \text {in }\;B_r(z)\cap \Omega , \\ u=n &{}\quad \text {on }\;\Omega \cap \partial B_r(z),\\ u=0 &{}\quad \text {on }\;\partial \Omega \cap B_r(z), \end{array} \end{aligned}$$

converges, as \(n\rightarrow \infty \), to a barrier function \(u_{r,z}\in C({{\overline{\Omega }}}\cap B_r(z))\) satisfying

$$\begin{aligned} \begin{array}{lll} -\Delta u+\mathrm{e}^{-\frac{\kappa }{d(x)}}u^p=0 &{}\quad \text {in }\;B_r(z)\cap \Omega , \\ u=\infty &{}\quad \text {on }\;\Omega \cap \partial B_r(z). \end{array} \end{aligned}$$

Taking a point \(a\in \partial \Omega \cap B^c_{2r}(z)\), for any \(k>0\) there exists \(n=n(k)\) such that \(v_{a,k}\le n(k)\) on \(\Omega \cap \partial B_r(z)\). Since \(v_{a,k}=0\) on \(\partial \Omega \cap B_r(z)\), it follows that \(v_{a,k}\le u_n\). Thus, letting \(k\rightarrow \infty \) yields \(u^\mathrm{min}\le u_{r,z}\), which is a contradiction.

4. If \(\partial \Omega \) is \(C^2\) and

$$\begin{aligned} g(x,r)= \mathrm{e}^{-\frac{1}{d^\alpha (x)}}r^p, \end{aligned}$$

with \(0<\alpha <1\) and \(p>1\), it is proved in [33] that the limit when \(k\rightarrow \infty \) of the solutions \(v_{a,k}\) of

$$\begin{aligned} \begin{array}{ll} -\Delta u+\mathrm{e}^{-\frac{1}{d^\alpha (x)}}u^p=0 &{}\quad \text {in }\;\Omega \\ u=k\delta _a &{}\quad \text {on }\;\partial \Omega , \end{array} \end{aligned}$$
(4.4)

is a solution of

$$\begin{aligned} -\Delta u+\mathrm{e}^{-\frac{1}{d^\alpha (x)}}u^p=0\quad \text {in }\;\Omega \end{aligned}$$

which vanishes on \(\partial \Omega {\setminus }\{a\}\) and blows up at a. We conjecture that the strong barrier property holds if

$$\begin{aligned} g(x,r)\ge \mathrm{e}^{-\frac{1}{d^\alpha (x)}}r^p. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Gómez, J., Maire, L. & Véron, L. General uniqueness results for large solutions. Z. Angew. Math. Phys. 71, 109 (2020). https://doi.org/10.1007/s00033-020-01325-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01325-5

Keywords

Mathematics Subject Classification

Navigation