Skip to main content
Log in

Physical layer security for space–time-block-coded MIMO system in Rician fading in the presence of imperfect feedback

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

We investigate physical layer security (PLY) of space–time-block-coded (STBC)–multi-input–multi-output (MIMO) wiretap channel in the presence of imperfect channel state information (ICSI) over Rician fading channel. Secrecy for data transmission to legitimate user in the presence of eavesdropper is metered in terms of average secrecy capacity (ASC), probability of non-zero secrecy rate (PNZSR) and secrecy outage probability (SOP). We derive the closed form expression for security parameter by using the probability distribution function and cumulative distribution function of output signal to noise ratio (SNR). Simulation results are presented to validate our analytical results and demonstrate the impact of ICSI on the secrecy performance of STBC–MIMO system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wyner, A. D. (2010). The wire-tap channel. Bell System Technical Journal,54(8), 1355–1387.

    Article  MathSciNet  Google Scholar 

  2. Tekin, E., & Yener, A. (2008). The general Gaussian multiple-access and two-way wiretap channels: Achievable rates and cooperative jamming. IEEE Transactions on Information Theory,54(6), 2735–2751.

    Article  MathSciNet  Google Scholar 

  3. Leung-Yan-Cheong, S. K., & Hellman, M. E. (1987). The Gaussian wire-tap channel. IEEE Transactions on Information Theory,24(4), 451–456.

    Article  MathSciNet  Google Scholar 

  4. Bloch, M., Barros, J., Rodrigues, M., & MaLaughlin, S. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory,54(6), 2515–2534.

    Article  MathSciNet  Google Scholar 

  5. Oggier, F., & Hassibi, B. (2010). The secrecy capacity of the MIMO wiretap channel. IEEE Transactions on Information Theory,57(8), 4961–4972.

    Article  MathSciNet  Google Scholar 

  6. Prabhu, V. U., & Rodrigues, M. R. (2011). On wireless channels with M-antenna eavesdroppers: Characterization of the outage probability and outage secrecy capacity. IEEE Transactions on Information Forensics and Security,6(3), 853–860.

    Article  Google Scholar 

  7. Khisti, A., & Wornell, G. W. (2010). Secure transmission with multiple antennasI: The MISOME wiretap channel. IEEE Transactions on Information Theory,56(7), 3088–3104.

    Article  MathSciNet  Google Scholar 

  8. Khisti, A., & Wornell, G. W. (2010). Secure transmission with multiple antennas—Part 2: The MIMOME wiretap channel. IEEE Transactions on Information Theory,56(11), 5515–5532.

    Article  MathSciNet  Google Scholar 

  9. Liu, T., & Shamai, S. (2009). A note on the secrecy capacity of multiple antenna wiretap channel. IEEE Transactions on Information Theory,55(6), 2547–2533.

    Article  MathSciNet  Google Scholar 

  10. Shafiee, S., & Ulukus, S. (2007). Achievable rate in Gaussian MISO channels with secrecy constraints. In Proceedings of IEEE international symposium information theory (ISIT, pp. 2466–2470).

  11. Gerbracht, S., Scheunert, C., & Jorswieck, E. A. (2012). Secrecy outage in MISO systems with partial channel information. IEEE Transactions on Information Forensics and Security,7(2), 704–716.

    Article  Google Scholar 

  12. Sarkar, M. Z., & Ratnarajah, T. (2012). Enhancing security in correlated channel with maximal ratio combining diversity. IEEE Transactions on Signal Processing,60(12), 6745–6751.

    Article  MathSciNet  Google Scholar 

  13. Yang, N., Yeoh, P. L., Elkashlan, M., Schober, R., & Collings, I. B. (2012). Secure transmission via transmit antenna selection in MIMO wiretap channels. In IEEE GLOBECOM, Anaheim, CA (pp. 807–812).

  14. Yang, N., Yeoh, P. L., Elkashlan, M., Schober, R., & Collings, I. B. (2012). Transmit antenna selection for security enhancement in MIMO wiretap channels. IEEE Transactions on Communications,61(1), 144–154.

    Article  Google Scholar 

  15. Wang, L., Elkashlan, M., Huang, J., Schober, R., & Mallik, R. K. (2014). Secure transmission with antenna selection in MIMO Nakagami-m fading channels. IEEE Transactions on Wireless Communications,13(11), 6054–6067.

    Article  Google Scholar 

  16. Alves, H., Souza, R. D., Debbah, M., & Bennis, M. (2012). Performance of transmit antenna selection physical layer security schemes. IEEE Signal Processing Letters,19(6), 372–375.

    Article  Google Scholar 

  17. Zhu, J., Zou, Y., Wang, G., Yao, Y. D., & Karagiannidis, G. K. (2016). On secrecy performance of antenna-selection-aided MIMO systems against eavesdropping. IEEE Transactions on Vehicular Technology,65(1), 214–225.

    Article  Google Scholar 

  18. Wang, W., Teh, K. C., Luo, S., & Li, K. H. (2018). Physical layer security in heterogeneous networks with pilot attack: A stochastic geometry approach. IEEE Transactions on Communications,66(12), 6437–6449.

    Article  Google Scholar 

  19. Wang, W., Teh, K. C., & Li, K. H. (2016). Relay selection for secure successive AF relaying networks with untrusted nodes. IEEE Transactions on Information Forensics and Security,11(11), 2466–2476.

    Article  Google Scholar 

  20. Tang, X., Ren, P., & Han, Z. (2018). Hierarchical competition as equilibrium program with equilibrium constraints towards security-enhanced wireless networks. IEEE Journal on Selected Areas in Communications,36(7), 1564–1578.

    Article  Google Scholar 

  21. Subramanian, A., Thangaraj, A., Bloch, M., & McLaughlin, S. W. (2011). Strong secrecy on the binary erasure wiretap channel using large-girth LDPC codes. IEEE Transactions on Information Forensics and Security,6(3), 585–594.

    Article  Google Scholar 

  22. Chen, D., Zhang, N., Cheng, N., Zhang, K., Qin, Z., & Shen, X. S. (2018). Physical layer based message authentication with secure channel codes. IEEE Transactions on Dependable and Secure Computing. https://doi.org/10.1109/TDSC.2018.2846258.

    Article  Google Scholar 

  23. Thangaraj, A., Dihidar, S., Calderbank, A. R., McLaughlin, S. W., & Merolla, J. M. (2007). Applications of LDPC codes to the wiretap channel. IEEE Transactions on Information Theory,53(8), 2933–2945.

    Article  MathSciNet  Google Scholar 

  24. Yan, S., Yang, N., Malaney, R., & Yuan, J. (2014). Transmit antenna selection with Alamouti coding and power allocation in MIMO wiretap channels. IEEE Transactions on Wireless Communications,13(3), 1656–1667.

    Article  Google Scholar 

  25. Kumar, R., & Chauhan, S. S. (2017). Secrecy analysis of MRT/RAS system under Nakagami-m fading channels in the presence of imperfect channel state information. International Journal of Electronics and Communications (AEU),85, 68–73.

    Article  Google Scholar 

  26. Shin, H., & Lee, J. H. (2004). Performance analysis of space–time block codes over keyhole Nakagami-m fading channels. IEEE Transactions on Vehicular Technology,53(2), 351–362.

    Article  Google Scholar 

  27. Gradshteyn, I., & Ryzhik, M. (1994). Tables of integrals, series and products. New York: Academic.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Secrecy capacity is described as:

$$ C_{s} = \left[ {C_{B} - C_{E} } \right]^{ + } , $$
(14)

where \(C_{B} = \log \left( {1 + x_{b} } \right)\;{\text{and}}\;C_{E} = \log \left( {1 + x_{e} } \right).\) The ASC can be written as

$$ \overline{C}_{s} = \int_{0}^{\infty } {\left[ {\int_{0}^{\infty } {C_{s} f_{{\gamma_{E} }} \left( {x_{e} } \right)dx_{e} } } \right]} f_{{\gamma_{B} }} \left( {x_{b} } \right)dx_{b} . $$
(15)

Let us consider, \(\Delta_{1} = \int_{0}^{\infty } {C_{s} f_{{\gamma_{E} }} \left( {x_{e} } \right)dx_{e} } .\) By putting the value of \(C_{s}\) into this equation we get

$$ \Delta_{1} = \int_{0}^{{x_{b} }} {\left[ {\log_{2} \left( {1 + x_{b} } \right) - \log_{2} \left( {1 + x_{e} } \right)} \right]} f_{{\gamma_{E} }} \left( {x_{e} } \right)dx_{e} . $$
(16)

By doing integration by parts method, and utilizing algebra on Eq. (16), we get equation as

$$ \begin{aligned} \Delta_{1} & = \log_{2} \left( {1 + x_{b} } \right)F_{{\gamma_{E} }} \left( {x_{b} } \right) - \left[ {\log_{2} \left( {1 + x_{b} } \right)F_{{\gamma_{E} }} \left( {x_{b} } \right) - \frac{1}{\ln 2}\int_{0}^{{x_{b} }} {\frac{{F_{{\gamma_{E} }} \left( {x_{e} } \right)}}{{1 + x_{e} }}dx_{e} } } \right] \\ & = \frac{1}{\ln 2}\int_{0}^{{x_{b} }} {\frac{{F_{{\gamma_{E} }} \left( {x_{e} } \right)}}{{1 + x_{e} }}dx_{e} } . \\ \end{aligned} $$
(17)

By putting the value of \(\Delta_{1}\) into Eq. (15), we get final expression for ASC as shown below:

$$ \overline{C}_{s} = \frac{1}{\ln 2}\int_{0}^{\infty } {\frac{{F_{{\gamma_{E} }} \left( {x_{e} } \right)}}{{1 + x_{e} }}\left( {1 - F_{{\gamma_{B} }} \left( {x_{b} } \right)} \right)} dx_{b} . $$
(18)

By putting the value of CDF \(F_{{\gamma_{E} }} \left( {x_{e} } \right)\) and CDF \(F_{{\gamma_{B} }} \left( {x_{b} } \right)\) into Eq. (18), and by using [27, 9.211.4], we expressed the ASC as shown below in Eq. (19):

$$ \begin{aligned} & \overline{C} _{s} = - \frac{1}{{\ln 2}}\left( {\frac{{L_{A} r_{e} \left( {1 + \sigma _{e}^{2} \overline{\gamma } _{e} } \right)}}{{c_{e}^{2} \overline{\gamma } _{e} }}} \right)^{{\left( {\frac{{L_{A} L_{E} + 1}}{2}} \right)}} e^{{\left( { - \frac{{L_{A} L_{E} K_{e} }}{{c_{e}^{2} }}} \right)}} \left( {\frac{{c_{e}^{2} }}{{L_{A} L_{E} K_{e} }}} \right)^{{\left( {\frac{{L_{A} L_{E} - 1}}{2}} \right)}} \\ & \quad \quad \times \sum\limits_{{n = 0}}^{\infty } {\frac{{\left( { - 1} \right)^{n} }}{{n{!}}}\left( {\frac{{r_{e} L_{E} L_{A}^{2} K_{e} \left( {1 + \sigma _{e}^{2} \overline{\gamma } _{e} } \right)}}{{c_{e}^{4} \overline{\gamma } _{e} }}} \right)} ^{{\left( {n + \frac{{L_{A} L_{E} - 1}}{2}} \right)}} \sum\limits_{{l = 0}}^{{n + L_{A} L_{E} - 1}} {\left( {n + L_{A} L_{E} - 1} \right){!}\left( {\frac{{c_{e}^{2} \overline{\gamma } _{e} }}{{L_{A} r_{e} \left( {1 + \sigma _{e}^{2} \overline{\gamma } _{e} } \right)}}} \right)} ^{{n + L_{A} L_{E} - l}} \\ & \quad \Psi \left( {l + 1,\;l + 1;\;\frac{{L_{A} r_{e} \left( {1 + \sigma _{e}^{2} \overline{\gamma } _{e} } \right)}}{{c_{e}^{2} \overline{\gamma } _{e} }}} \right) - \frac{1}{{\ln 2}}\left( {\frac{{L_{A} r_{e} \left( {1 + \sigma _{e}^{2} \overline{\gamma } _{e} } \right)}}{{c_{e}^{2} \overline{\gamma } _{e} }}} \right)^{{\left( {\frac{{L_{A} L_{E} + 1}}{2}} \right)}} e^{{\left( { - \frac{{L_{A} L_{E} K_{e} }}{{c_{e}^{2} }}} \right)}} \left( {\frac{{c_{e}^{2} }}{{L_{A} L_{E} K_{e} }}} \right)^{{\left( {\frac{{L_{A} L_{E} - 1}}{2}} \right)}} \\ & \quad \quad \times \sum\limits_{{n = 0}}^{\infty } {\frac{{\left( { - 1} \right)^{n} }}{{n{!}}}\left( {\frac{{r_{e} L_{E} L_{A}^{2} K_{e} \left( {1 + \sigma _{e}^{2} \overline{\gamma } _{e} } \right)}}{{c_{e}^{4} \overline{\gamma } _{e} }}} \right)} ^{{\left( {n + \frac{{L_{A} L_{E} - 1}}{2}} \right)}} \left( {\frac{{L_{A} r_{b} \left( {1 + \sigma _{b}^{2} \overline{\gamma } _{b} } \right)}}{{c_{b}^{2} \overline{\gamma } _{b} }}} \right)^{{\left( {\frac{{L_{A} L_{B} + 1}}{2}} \right)}} e^{{\left( { - \frac{{L_{A} L_{B} K_{b} }}{{c_{b}^{2} }}} \right)}} \left( {\frac{{c_{b}^{2} }}{{L_{A} L_{B} K_{e} }}} \right)^{{\left( {\frac{{L_{A} L_{B} - 1}}{2}} \right)}} \\ & \quad \quad \times \sum\limits_{{m = 0}}^{\infty } {\frac{{\left( { - 1} \right)^{m} }}{{m{!}}}\left( {\frac{{r_{b} L_{B} L_{A}^{2} K_{b} \left( {1 + \sigma _{b}^{2} \overline{\gamma } _{b} } \right)}}{{c_{b}^{4} \overline{\gamma } _{b} }}} \right)} ^{{\left( {m + \frac{{L_{A} L_{B} - 1}}{2}} \right)}} \left[ \begin{gathered} - \left( {\frac{{c_{b}^{2} \overline{\gamma } _{b} }}{{L_{A} r_{b} \left( {1 + \sigma _{b}^{2} \overline{\gamma } _{b} } \right)}}} \right)^{{m + L_{A} L_{B} }} \left( {m + L_{A} L_{B} - 1} \right){!} \hfill \\ \sum\limits_{{l = 0}}^{{n + L_{A} L_{E} - 1}} {\left( {n + L_{A} L_{E} - 1} \right){!}\left( {\frac{{c_{e}^{2} \overline{\gamma } _{e} }}{{L_{A} r_{e} \left( {1 + \sigma _{e}^{2} \overline{\gamma } _{e} } \right)}}} \right)} ^{{n + L_{A} L_{E} - l}} \Psi \left( {l + 1,\;l + 1;\;\frac{{L_{A} r_{e} \left( {1 + \sigma _{e}^{2} \overline{\gamma } _{e} } \right)}}{{c_{e}^{2} \overline{\gamma } _{e} }}} \right) \hfill \\ \end{gathered} \right] \\ & \quad \quad \times - \frac{1}{{\ln 2}}\left( {\frac{{L_{A} r_{e} \left( {1 + \sigma _{e}^{2} \overline{\gamma } _{e} } \right)}}{{c_{e}^{2} \overline{\gamma } _{e} }}} \right)^{{\left( {\frac{{L_{A} L_{E} + 1}}{2}} \right)}} e^{{\left( { - \frac{{L_{A} L_{E} K_{e} }}{{c_{e}^{2} }}} \right)}} \left( {\frac{{c_{e}^{2} }}{{L_{A} L_{E} K_{e} }}} \right)^{{\left( {\frac{{L_{A} L_{E} - 1}}{2}} \right)}} \\ & \quad \quad \times \sum\limits_{{n = 0}}^{\infty } {\frac{{\left( { - 1} \right)^{n} }}{{n{!}}}\left( {\frac{{r_{e} L_{E} L_{A}^{2} K_{e} \left( {1 + \sigma _{e}^{2} \overline{\gamma } _{e} } \right)}}{{c_{e}^{4} \overline{\gamma } _{e} }}} \right)} ^{{\left( {n + \frac{{L_{A} L_{E} - 1}}{2}} \right)}} \left( {\frac{{L_{A} r_{b} \left( {1 + \sigma _{b}^{2} \overline{\gamma } _{b} } \right)}}{{c_{b}^{2} \overline{\gamma } _{b} }}} \right)^{{\left( {\frac{{L_{A} L_{B} + 1}}{2}} \right)}} e^{{\left( { - \frac{{L_{A} L_{B} K_{b} }}{{c_{b}^{2} }}} \right)}} \left( {\frac{{c_{b}^{2} }}{{L_{A} L_{B} K_{e} }}} \right)^{{\left( {\frac{{L_{A} L_{B} - 1}}{2}} \right)}} \\ & \quad \quad \times \sum\limits_{{m = 0}}^{\infty } {\frac{{\left( { - 1} \right)^{m} }}{{m{!}}}\left( {\frac{{r_{b} L_{B} L_{A}^{2} K_{b} \left( {1 + \sigma _{b}^{2} \overline{\gamma } _{b} } \right)}}{{c_{b}^{4} \overline{\gamma } _{b} }}} \right)} ^{{\left( {m + \frac{{L_{A} L_{B} - 1}}{2}} \right)}} \left[ \begin{gathered} - \sum\limits_{{k = 0}}^{{m + L_{A} L_{B} - 1}} {\left( {m + L_{A} L_{B} - 1} \right){!}\left( {\frac{{c_{b}^{2} \overline{\gamma } _{b} }}{{L_{A} r_{b} \left( {1 + \sigma _{b}^{2} \overline{\gamma } _{b} } \right)}}} \right)} ^{{m + L_{A} L_{B} - k}} \left( {n + L_{A} L_{E} - 1} \right){!} \times \hfill \\ \left( {\frac{{c_{e}^{2} \overline{\gamma } _{e} }}{{L_{A} r_{e} \left( {1 + \sigma _{e}^{2} \overline{\gamma } _{e} } \right)}}} \right)^{{n + L_{A} L_{E} }} \Psi \left( {k + 1,\;k + 1;\,\frac{{L_{A} r_{b} \left( {1 + \sigma _{b}^{2} \overline{\gamma } _{b} } \right)}}{{c_{b}^{2} \overline{\gamma } _{b} }}} \right) \hfill \\ \end{gathered} \right] \\ & \quad \quad - \frac{1}{{\ln 2}}\left( {\frac{{L_{A} r_{e} \left( {1 + \sigma _{e}^{2} \overline{\gamma } _{e} } \right)}}{{c_{e}^{2} \overline{\gamma } _{e} }}} \right)^{{\left( {\frac{{L_{A} L_{E} + 1}}{2}} \right)}} e^{{\left( { - \frac{{L_{A} L_{E} K_{e} }}{{c_{e}^{2} }}} \right)}} \left( {\frac{{c_{e}^{2} }}{{L_{A} L_{E} K_{e} }}} \right)^{{\left( {\frac{{L_{A} L_{E} - 1}}{2}} \right)}} \sum\limits_{{n = 0}}^{\infty } {\frac{{\left( { - 1} \right)^{n} }}{{n{!}}}\left( {\frac{{r_{e} L_{E} L_{A}^{2} K_{e} \left( {1 + \sigma _{e}^{2} \overline{\gamma } _{e} } \right)}}{{c_{e}^{4} \overline{\gamma } _{e} }}} \right)} ^{{\left( {n + \frac{{L_{A} L_{E} - 1}}{2}} \right)}} \\ & \quad \left( {\frac{{L_{A} r_{b} \left( {1 + \sigma _{b}^{2} \overline{\gamma } _{b} } \right)}}{{c_{b}^{2} \overline{\gamma } _{b} }}} \right)^{{\left( {\frac{{L_{A} L_{B} + 1}}{2}} \right)}} e^{{\left( { - \frac{{L_{A} L_{B} K_{b} }}{{c_{b}^{2} }}} \right)}} \left( {\frac{{c_{b}^{2} }}{{L_{A} L_{B} K_{e} }}} \right)^{{\left( {\frac{{L_{A} L_{B} - 1}}{2}} \right)}} \sum\limits_{{m = 0}}^{\infty } {\frac{{\left( { - 1} \right)^{m} }}{{m{!}}}\left( {\frac{{r_{b} L_{B} L_{A}^{2} K_{b} \left( {1 + \sigma _{b}^{2} \overline{\gamma } _{b} } \right)}}{{c_{b}^{4} \overline{\gamma } _{b} }}} \right)} ^{{\left( {m + \frac{{L_{A} L_{B} - 1}}{2}} \right)}} \\ & \quad \left[ \begin{gathered} \sum\limits_{{k = 0}}^{{m + L_{A} L_{B} - 1}} {\frac{{\left( {m + L_{A} L_{B} - 1} \right){!}}}{{k{!}}}\left( {\frac{{c_{b}^{2} \overline{\gamma } _{b} }}{{L_{A} r_{b} \left( {1 + \sigma _{b}^{2} \overline{\gamma } _{b} } \right)}}} \right)^{{m + L_{A} L_{B} - k}} } \sum\limits_{{l = 0}}^{{n + L_{A} L_{E} - 1}} {\frac{{\left( {n + L_{A} L_{E} - 1} \right){!}}}{{l{!}}}\left( {\frac{{c_{e}^{2} \overline{\gamma } _{e} }}{{L_{A} r_{e} \left( {1 + \sigma _{e}^{2} \overline{\gamma } _{e} } \right)}}} \right)^{{n + L_{A} L_{E} - l}} } \hfill \\ \left( {k + l} \right){!}\Psi \left( {k + l + 1,\;k + l + 1;\;\frac{{L_{A} r_{b} \left( {1 + \sigma _{b}^{2} \overline{\gamma } _{b} } \right)}}{{c_{b}^{2} \overline{\gamma } _{b} }} + \frac{{L_{A} r_{e} \left( {1 + \sigma _{e}^{2} \overline{\gamma } _{e} } \right)}}{{c_{e}^{2} \overline{\gamma } _{e} }}} \right) \hfill \\ \end{gathered} \right]. \\ \end{aligned} $$
(19)

Appendix 2

$$ \Pr \left( {C_{S} > 0} \right) = \int_{0}^{\infty } {f_{{\gamma_{B} }} \left( x \right)F_{{\gamma_{E} }} \left( x \right)} dx. $$
(20)

By putting the value of PDF of output SNR at Bob \(f_{{\gamma_{B} }} \left( x \right)\) and CDF of output SNR at Eve \(F_{{\gamma_{E} }} \left( x \right)\) into Eq. (20) and using results of [27, 3.351.3], the PNZSR can be expressed as shown below:

$$ \begin{aligned} & \Pr \left( {C_{S} > 0} \right) = \left( {\frac{{L_{A} r_{b} \left( {1 + \sigma_{b}^{2} \overline{\gamma }_{b} } \right)}}{{c_{b}^{2} \overline{\gamma }_{b} }}} \right)^{{\left( {\frac{{L_{A} L_{B} + 1}}{2}} \right)}} e^{{\left( { - \frac{{L_{A} L_{B} K_{b} }}{{c_{b}^{2} }}} \right)}} \left( {\frac{{c_{b}^{2} }}{{L_{A} L_{B} K_{b} }}} \right)^{{\left( {\frac{{L_{A} L_{B} - 1}}{2}} \right)}} \\ & \quad \times \sum\limits_{m = 0}^{\infty } {\frac{{\left( { - 1} \right)^{m} }}{{m{!}\left( {m + L_{A} L_{B} - 1} \right){!}}}\left( {\frac{{r_{b} L_{B} L_{A}^{2} K_{b} \left( {1 + \sigma_{b}^{2} \overline{\gamma }_{b} } \right)}}{{c_{b}^{4} \overline{\gamma }_{b} }}} \right)}^{{\left( {m + \frac{{L_{A} L_{B} - 1}}{2}} \right)}} \left( {\frac{{L_{A} r_{e} \left( {1 + \sigma_{e}^{2} \overline{\gamma }_{e} } \right)}}{{c_{e}^{2} \overline{\gamma }_{e} }}} \right)^{{\left( {\frac{{L_{A} L_{E} + 1}}{2}} \right)}} \\ & \quad \times e^{{\left( { - \frac{{L_{A} L_{E} K_{e} }}{{c_{e}^{2} }}} \right)}} \left( {\frac{{c_{e}^{2} }}{{L_{A} L_{E} K_{e} }}} \right)^{{\left( {\frac{{L_{A} L_{E} - 1}}{2}} \right)}} \sum\limits_{n = 0}^{\infty } {\frac{{\left( { - 1} \right)^{n} }}{{n{!}\left( {n + L_{A} L_{E} - 1} \right){!}}}\left( {\frac{{r_{e} L_{E} L_{A}^{2} K_{e} \left( {1 + \sigma_{e}^{2} \overline{\gamma }_{e} } \right)}}{{c_{e}^{4} \overline{\gamma }_{e} }}} \right)}^{{\left( {n + \frac{{L_{A} L_{E} - 1}}{2}} \right)}} \\ & \quad \times \left[ {\left( {n + L_{A} L_{E} - 1} \right){!}\left( {\frac{{c_{e}^{2} \overline{\gamma }_{e} }}{{L_{A} r_{e} \left( {1 + \sigma_{e}^{2} \overline{\gamma }_{e} } \right)}}} \right)^{{n + L_{A} L_{E} }} \left( {m + L_{A} L_{B} - 1} \right){!}\left( {\frac{{L_{A} r_{b} \left( {1 + \sigma_{b}^{2} \overline{\gamma }_{b} } \right)}}{{c_{b}^{2} \overline{\gamma }_{b} }}} \right)^{{ - \left( {m + L_{A} L_{B} } \right)}} } \right] \\ & \quad - \left( {\frac{{L_{A} r_{b} \left( {1 + \sigma_{b}^{2} \overline{\gamma }_{b} } \right)}}{{c_{b}^{2} \overline{\gamma }_{b} }}} \right)^{{\left( {\frac{{L_{A} L_{B} + 1}}{2}} \right)}} e^{{\left( { - \frac{{L_{A} L_{B} K_{b} }}{{c_{b}^{2} }}} \right)}} \left( {\frac{{c_{b}^{2} }}{{L_{A} L_{B} K_{b} }}} \right)^{{\left( {\frac{{L_{A} L_{B} - 1}}{2}} \right)}} \\ & \quad \times \sum\limits_{m = 0}^{\infty } {\frac{{\left( { - 1} \right)^{m} }}{{m{!}\left( {m + L_{A} L_{B} - 1} \right){!}}}\left( {\frac{{r_{b} L_{B} L_{A}^{2} K_{b} \left( {1 + \sigma_{b}^{2} \overline{\gamma }_{b} } \right)}}{{c_{b}^{4} \overline{\gamma }_{b} }}} \right)}^{{\left( {m + \frac{{L_{A} L_{B} - 1}}{2}} \right)}} \left( {\frac{{L_{A} r_{e} \left( {1 + \sigma_{e}^{2} \overline{\gamma }_{e} } \right)}}{{c_{e}^{2} \overline{\gamma }_{e} }}} \right)^{{\left( {\frac{{L_{A} L_{E} + 1}}{2}} \right)}} \\ & \quad \times e^{{\left( { - \frac{{L_{A} L_{E} K_{e} }}{{c_{e}^{2} }}} \right)}} \left( {\frac{{c_{e}^{2} }}{{L_{A} L_{E} K_{e} }}} \right)^{{\left( {\frac{{L_{A} L_{E} - 1}}{2}} \right)}} \sum\limits_{n = 0}^{\infty } {\frac{{\left( { - 1} \right)^{n} }}{{n{!}\left( {n + L_{A} L_{E} - 1} \right){!}}}\left( {\frac{{r_{e} L_{E} L_{A}^{2} K_{e} \left( {1 + \sigma_{e}^{2} \overline{\gamma }_{e} } \right)}}{{c_{e}^{4} \overline{\gamma }_{e} }}} \right)}^{{\left( {n + \frac{{L_{A} L_{E} - 1}}{2}} \right)}} \\ & \quad \times \left[ \begin{gathered} \sum\limits_{l = 0}^{{n + L_{A} L_{E} - 1}} {\frac{{\left( {n + L_{A} L_{E} - 1} \right){!}}}{{l{!}}}} \left( {\frac{{c_{e}^{2} \overline{\gamma }_{e} }}{{L_{A} r_{e} \left( {1 + \sigma_{e}^{2} \overline{\gamma }_{e} } \right)}}} \right)^{{n + L_{A} L_{E} - l}} \left( {m + l + L_{A} L_{B} - 1} \right){!} \hfill \\ \times \left( {\frac{{L_{A} r_{b} \left( {1 + \sigma_{b}^{2} \overline{\gamma }_{b} } \right)}}{{c_{b}^{2} \overline{\gamma }_{b} }} + \frac{{L_{A} r_{e} \left( {1 + \sigma_{e}^{2} \overline{\gamma }_{e} } \right)}}{{c_{e}^{2} \overline{\gamma }_{e} }}} \right)^{{ - \left( {m + l + L_{A} L_{B} } \right)}} \hfill \\ \end{gathered} \right]. \\ \end{aligned} $$
(21)

Appendix 3

$$ P_{out} \left( {R_{S} } \right) = \Pr (R_{S} < C_{S} ) = = \int_{0}^{\infty } {F_{{\gamma_{B} }} \left( {2^{{R_{S} }} \left( {1 + x} \right) - 1} \right)f_{{\gamma_{e} }} } \left( x \right)dx. $$
(22)

By putting the value of PDF of output SNR at Eve \(f_{{\gamma_{e} }} \left( x \right)\) and CDF of output SNR at Bob with some modification \(F_{{\gamma_{B} }} \left( {2^{{R_{S} }} \left( {1 + x} \right) - 1} \right)\) into (22), we get final expression for SOP, which is shown in Eq. (23).

$$ \begin{aligned} & P_{out} \left( {R_{S} } \right) = \left( {\frac{{L_{A} r_{b} \left( {1 + \sigma_{b}^{2} \overline{\gamma }_{b} } \right)}}{{c_{b}^{2} \overline{\gamma }_{b} }}} \right)^{{\left( {\frac{{L_{A} L_{B} + 1}}{2}} \right)}} e^{{\left( { - \frac{{L_{A} L_{B} K_{b} }}{{c_{b}^{2} }}} \right)}} \left( {\frac{{c_{b}^{2} }}{{L_{A} L_{B} K_{b} }}} \right)^{{\left( {\frac{{L_{A} L_{B} - 1}}{2}} \right)}} \\ & \quad \times \sum\limits_{m = 0}^{\infty } {\frac{{\left( { - 1} \right)^{m} }}{{m{!}\left( {m + L_{A} L_{B} - 1} \right){!}}}\left( {\frac{{r_{b} L_{B} L_{A}^{2} K_{b} \left( {1 + \sigma_{b}^{2} \overline{\gamma }_{b} } \right)}}{{c_{b}^{4} \overline{\gamma }_{b} }}} \right)}^{{\left( {m + \frac{{L_{A} L_{B} - 1}}{2}} \right)}} \left( {\frac{{L_{A} r_{e} \left( {1 + \sigma_{e}^{2} \overline{\gamma }_{e} } \right)}}{{c_{e}^{2} \overline{\gamma }_{e} }}} \right)^{{\left( {\frac{{L_{A} L_{E} + 1}}{2}} \right)}} \\ & \quad \times e^{{\left( { - \frac{{L_{A} L_{E} K_{e} }}{{c_{e}^{2} }}} \right)}} \left( {\frac{{c_{e}^{2} }}{{L_{A} L_{E} K_{e} }}} \right)^{{\left( {\frac{{L_{A} L_{E} - 1}}{2}} \right)}} \sum\limits_{n = 0}^{\infty } {\frac{{\left( { - 1} \right)^{n} }}{{n{!}\left( {n + L_{A} L_{E} - 1} \right){!}}}\left( {\frac{{r_{e} L_{E} L_{A}^{2} K_{e} \left( {1 + \sigma_{e}^{2} \overline{\gamma }_{e} } \right)}}{{c_{e}^{4} \overline{\gamma }_{e} }}} \right)}^{{\left( {n + \frac{{L_{A} L_{E} - 1}}{2}} \right)}} \\ & \quad \times \left[ {\left( {m + L_{A} L_{B} - 1} \right)!\left( {\frac{{\overline{\gamma }_{b} c_{b}^{2} }}{{L_{A} r_{b} \left( {1 + \sigma_{b}^{2} \overline{\gamma }_{b} } \right)}}} \right)^{{m + L_{A} L_{B} }} \left( {n + L_{A} L_{E} - 1} \right)!\left( {\frac{{L_{A} r_{e} \left( {1 + \sigma_{e}^{2} \overline{\gamma }_{e} } \right)}}{{c_{e}^{2} \overline{\gamma }_{e} }}} \right)^{{ - \left( {n + L_{A} L_{E} } \right)}} } \right] \\ & \quad - \left( {\frac{{L_{A} r_{b} \left( {1 + \sigma_{b}^{2} \overline{\gamma }_{b} } \right)}}{{c_{b}^{2} \overline{\gamma }_{b} }}} \right)^{{\left( {\frac{{L_{A} L_{B} + 1}}{2}} \right)}} e^{{\left( { - \frac{{L_{A} L_{B} K_{b} }}{{c_{b}^{2} }}} \right)}} \left( {\frac{{c_{b}^{2} }}{{L_{A} L_{B} K_{b} }}} \right)^{{\left( {\frac{{L_{A} L_{B} - 1}}{2}} \right)}} \\ & \quad \times \sum\limits_{m = 0}^{\infty } {\frac{{\left( { - 1} \right)^{m} }}{{m{!}\left( {m + L_{A} L_{B} - 1} \right){!}}}\left( {\frac{{r_{b} L_{B} L_{A}^{2} K_{b} \left( {1 + \sigma_{b}^{2} \overline{\gamma }_{b} } \right)}}{{c_{b}^{4} \overline{\gamma }_{b} }}} \right)}^{{\left( {m + \frac{{L_{A} L_{B} - 1}}{2}} \right)}} \left( {\frac{{L_{A} r_{e} \left( {1 + \sigma_{e}^{2} \overline{\gamma }_{e} } \right)}}{{c_{e}^{2} \overline{\gamma }_{e} }}} \right)^{{\left( {\frac{{L_{A} L_{E} + 1}}{2}} \right)}} \\ & \quad \times e^{{\left( { - \frac{{L_{A} L_{E} K_{e} }}{{c_{e}^{2} }}} \right)}} \left( {\frac{{c_{e}^{2} }}{{L_{A} L_{E} K_{e} }}} \right)^{{\left( {\frac{{L_{A} L_{E} - 1}}{2}} \right)}} \sum\limits_{n = 0}^{\infty } {\frac{{\left( { - 1} \right)^{n} }}{{n{!}\left( {n + L_{A} L_{E} - 1} \right){!}}}\left( {\frac{{r_{e} L_{E} L_{A}^{2} K_{e} \left( {1 + \sigma_{e}^{2} \overline{\gamma }_{e} } \right)}}{{c_{e}^{4} \overline{\gamma }_{e} }}} \right)}^{{\left( {n + \frac{{L_{A} L_{E} - 1}}{2}} \right)}} \\ & \quad \times \left[ \begin{gathered} \sum\limits_{k = 0}^{{\left( {m + L_{A} L_{B} - 1} \right)}} {\frac{{\left( {m + L_{A} L_{B} - 1} \right)!}}{k!}} \left( {\frac{{\overline{\gamma }_{b} c_{b}^{2} }}{{L_{A} r_{b} \left( {1 + \sigma_{b}^{2} \overline{\gamma }_{b} } \right)}}} \right)^{{m + L_{A} L_{B} - k}} e^{{ - \left( {\frac{{L_{A} r_{b} \left( {1 + \sigma_{b}^{2} \overline{\gamma }_{b} } \right)}}{{c_{b}^{2} \overline{\gamma }_{b} }}} \right)\left( {2^{{R_{S} }} - 1} \right)}} \hfill \\ \times \sum\limits_{i = 0}^{k} {\left( {\begin{array}{*{20}c} k \\ i \\ \end{array} } \right)\left( {2^{{R_{S} }} - 1} \right)^{k - i} \left( {2^{{R_{S} }} } \right)^{i} \left( {i + n + L_{A} L_{E} - 1} \right)!\left( {\frac{{L_{A} r_{e} \left( {1 + \sigma_{e}^{2} \overline{\gamma }_{e} } \right)}}{{c_{e}^{2} \overline{\gamma }_{e} }} + \frac{{L_{A} r_{b} \left( {1 + \sigma_{b}^{2} \overline{\gamma }_{b} } \right)}}{{c_{b}^{2} \overline{\gamma }_{b} }}} \right)^{{ - \left( {n + L_{A} L_{E} + i} \right)}} } \hfill \\ \end{gathered} \right]. \\ \end{aligned} $$
(23)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Chauhan, S.S. Physical layer security for space–time-block-coded MIMO system in Rician fading in the presence of imperfect feedback. Wireless Netw 26, 4239–4247 (2020). https://doi.org/10.1007/s11276-020-02327-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02327-x

Keywords

Navigation