Skip to main content
Log in

Effect of Cooling Rate on the Precipitation Behavior of a Fe–Cr–Ni Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Ferrite (δ) in two-phase austenite–ferrite Fe–Cr–Ni alloys decomposes into Mo- and Cr-rich phases like sigma (σ) and chi (χ), when aged in the temperature range of 873–1273 K (600–1000 °C). The precipitation of these phases for a particular Fe-Cr-Ni alloy has an adverse effect on its mechanical properties and corrosion resistance. In the present work, precipitation behavior of UNS S32205 duplex stainless steel (a Fe–Cr–Ni alloy) during controlled cooling and heating (isothermal aging) has been studied in the temperature range of 973–1073 K (700–800 °C). Scanning electron microscope (SEM), X-ray diffraction (XRD), electron backscattered diffraction (EBSD) and energy-dispersive spectrometer (EDS) attached to SEM were used to characterize the microstructures. The effect of precipitation of σ and χ phases on the micro-hardness was also studied. The precipitation sequence for 1023 K (750 °C), when cooled from 12,000 to 5 °C/min, was δ → carbides → χ → σ, while for 1073 K (800 °C), it was found to be δ → χ → σ. The Mo-enriched metastable χ phase nucleates at the initial stage of aging which then transforms to stable σ precipitates. The amount of σ and χ phases increased with temperature and aging time, but temperature was found to have a dominant role than the cooling rate due to higher diffusion of solute atoms at high temperatures. EBSD studies did not show any orientation relationship between parent δ ferrite and σ phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gunn R, Duplex Stainless Steels: Microstructure, Properties and Applications, Abington Publishing, Cambridge (1997) p 219.

    Google Scholar 

  2. Alvarez-Armas I, and Degallaix-Moreuil S, Duplex Stainless Steels, Wiley, Hoboken (2009).

    Google Scholar 

  3. Nilsson J O, Mater Sci Technol8 (1992) 685.

    CAS  Google Scholar 

  4. Pramanik A, and Basak A K, Stainless Steel: Microstructure, Mechanical Properties and Methods of Application, Nova Science Publishers, Hauppauge (2015).

    Google Scholar 

  5. Kumar A, Khatirkar R K, Chalapathi D, Kumar G, Suwas S, Metall Mater Trans A48 (2017) 2349.

    CAS  Google Scholar 

  6. Kumar A, Khatirkar R K, Gupta A, Shekhawat S K, and Suwas S, Metall Mater Trans A49 (2018) 3402.

    CAS  Google Scholar 

  7. Sudhahar M, Mariappan R, and Revanth C, J Chem Pharm Sci9 (2016) 958.

    CAS  Google Scholar 

  8. Shamanth V, Ravishankar K S, and Hemanth K, Stainless Steels and Alloys, IntechOpen, London (2012) p 71.

    Google Scholar 

  9. Kumar A, Gupta A, Khatirkar RK, Bibhanshu N, and Suwas S, ISIJ Int58 (2018) 1840.

    CAS  Google Scholar 

  10. Kashiwar A, Vennela N P, Kamath S L, and Khatirkar R K, Mater Charact74 (2012) 55.

    CAS  Google Scholar 

  11. Chen T H, and Yang J R, Mater Sci Eng A311 (2001) 28.

    Google Scholar 

  12. Escriba D M, Materna-Morris E, Plaut R L, and Padilha A F, Mater Charact60 (2009) 1214.

    CAS  Google Scholar 

  13. Pohl M, Storz O, and Glogowski T, Mater Charact58 (2007) 65.

    CAS  Google Scholar 

  14. Michalska J, and Sozańska M, Mater Charact56 (2006) 355.

    CAS  Google Scholar 

  15. Sato Y S, and Kokawa H, Scr Mater40 (1999) 659.

    CAS  Google Scholar 

  16. Gregori A, and Nilsson J O, Metall Mater Trans A Phys Metall Mater Sci33 (2002) 1009.

    Google Scholar 

  17. Chen T H, Weng K L, and Yang J R, Mater Sci Eng A338 (2002) 259.

    Google Scholar 

  18. Glogowski T, Pohl M, and Storz O, Int J Mater Res99 (2008) 1163.

    Google Scholar 

  19. Hsieh C-C, and Wu W, ISRN Metall2012 (2012) 1. https://doi.org/10.5402/2012/732471.

    Article  CAS  Google Scholar 

  20. Devine T M, J Electrochem Soc126 (2006) 374.

    Google Scholar 

  21. Adhe K N, Kain V, Madangopal K, and Gadiyar H S, J Mater Eng Perform5 (1996) 500.

    CAS  Google Scholar 

  22. Berecz T, and Szabó P J, Period Polytech Mech Eng49 (2005) 123.

    Google Scholar 

  23. Lee K M, Cho H, and Choi D C, J Alloys Compd285 (1999) 156.

    CAS  Google Scholar 

  24. Stradomski Z, and Dyja D, 4th Youth Symp Exp Solid Mech (2009) p 17.

  25. Pérez A F M, Breda M, Calliari I, Medina G Y P, and Sandström R, Soldag Insp21 (2016) 165.

    Google Scholar 

  26. Calliari I, Ramous E, Rebuffi G, and Straffelini G, Metall Ital100 (2008) 5.

    Google Scholar 

  27. Okafor I C I, and Carlson O N, Metall Trans A9 (1978) 1651.

    Google Scholar 

  28. Goldschmidt H J, Interstitial Alloys, Butterworth & Co. Publishers Ltd., London (1969).

    Google Scholar 

  29. Lewis M H, Acta Metall14 (1966) 1421.

    CAS  Google Scholar 

  30. Atamert S, and King J E, J Mater Sci Lett12 (1993) 1144.

    CAS  Google Scholar 

  31. Knyazeva M, and Pohl M, Metallogr Microstruct Anal2(2013) 113.

    CAS  Google Scholar 

  32. Calliari I, Zanesco M, Ramous E, and Bassani P, J Mater Eng Perform16 (2007) 109.

    CAS  Google Scholar 

  33. Premachandra K, Cartie M B, and Eric R H, Mater Sci Technol8 (2014) 437.

    Google Scholar 

  34. Calliari I, Ramous E, and Bassani P, Mater Sci Forum638–642 (2010) 2986.

    Google Scholar 

  35. Sieurin H, and Sandström R, Mater Sci Eng A444 (2007) 271.

    Google Scholar 

  36. Reick W, Padilha A F, and Pohl M, ISIJ Int38 (1998) 567.

    CAS  Google Scholar 

  37. Baldwin W, and Vander Voort G F, Metallography and Microstructures Handbook, vol 9, ASM International, Cleveland (2004) p 2733.

    Google Scholar 

  38. OIM Analysis version: 7.2, User Man. TexSEM Lab. Inc. (2013).

  39. Schwartz A J, Kumar M, Adams B L, Field D P, El-Dasher B, and Deal A, Electron Backscatter Diffraction in Materials Science, Springer, Berlin (2009).

    Google Scholar 

  40. Waanders F B, Vorster S W, and Pollak H, Hyperfine Interact120–121 (1999) 751.

    Google Scholar 

  41. Chan K, and Tjong S, Materials (Basel)7 (2014) 5268.

    CAS  Google Scholar 

  42. Tehovnik F, Arzenšek B, Arh B, Skobir D, Pirnar B, and Žužek B, Mater Technol45 (2011) 339.

    CAS  Google Scholar 

  43. Badji R, Bouabdallah M, Bacroix B, Kahloun C, Bettahar K, and Kherrouba N, Mater Sci Eng A496 (2008) 447.

    Google Scholar 

  44. Shek C H, Lai J, and Duggan B J, Mater Sci Technol10 (2014) 306.

    Google Scholar 

  45. Souza C M Jr, Abreu H F G, Tavares S S M, Rebello J M A, Mater Charact59 (2008) 1301–1306.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Chancellor, VIT-AP University, and the Director, VNIT Nagpur, for their constant encouragement to publish this paper. The authors would also like to acknowledge the use of ‘National Facility of Texture & OIM (a DST-IRPHA facility)’ for EBSD measurements and Centre of Excellence for Steel Technology (CoEST), IIT Bombay, for the use of the dilatometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kisni Khatirkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Londhe, S., Dandekar, T. et al. Effect of Cooling Rate on the Precipitation Behavior of a Fe–Cr–Ni Alloy. Trans Indian Inst Met 73, 1961–1973 (2020). https://doi.org/10.1007/s12666-020-02011-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02011-w

Keywords

Navigation