Skip to main content
Log in

Comprehending deterministic and stochastic occasional uncoupling induced synchronizations through each other

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we numerically study the stochastic and the deterministic occasional uncoupling methods of effecting identical synchronized states in low dimensional, dissipative, diffusively coupled, chaotic flows that are otherwise not synchronized when continuously coupled at the same coupling strength parameter. In the process of our attempt to understand the mechanisms behind the success of the occasional uncoupling schemes, we devise a hybrid between the transient uncoupling and the stochastic on-off coupling, and aptly name it the transient stochastic uncoupling – yet another stochastic occasional uncoupling method. Our subsequent investigation on the transient stochastic uncoupling allows us to surpass the effectiveness of the stochastic on-off coupling with very fast on-off switching rate. Additionally, through the transient stochastic uncoupling, we establish that the indicators quantifying the local contracting dynamics in the corresponding transverse manifold are generally not useful in finding the optimal coupling region of the phase space in the case of the deterministic transient uncoupling. In fact, we highlight that the autocorrelation function – a non-local indicator of the dynamics – of the corresponding response system’s chaotic time-series dictates when the deterministic uncoupling could be successful. We illustrate all our heuristic results using a few well-known examples of diffusively coupled chaotic oscillators.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.H. Strogatz,Sync: The emerging science of spontaneous order, 1st edn. (Hyperion press, New York, 2003)

  2. A.T. Winfree, J. Theor. Biol. 16, 15 (1967)

    Google Scholar 

  3. I. Aihara, H. Kitahata, K. Yoshikawa, K. Aihara, Artif. Life Robot. 12, 29 (2008)

    Google Scholar 

  4. E. Montbrió, D. Pazó, A. Roxin, Phys. Rev. X 5, 021028 (2015)

    Google Scholar 

  5. H.G. Winful, L. Rahman, Phys. Rev. Lett. 65, 1575 (1990)

    ADS  Google Scholar 

  6. R. Roy, K.S. Thornburg, Phys. Rev. Lett. 72, 2009 (1994)

    ADS  Google Scholar 

  7. A.E. Motter, S.A. Myers, M. Anghel, T. Nishikawa, Nat. Phys. 9, 191 (2013)

    Google Scholar 

  8. K. Wiesenfeld, P. Colet, S.H. Strogatz, Phys. Rev. Lett. 76, 404 (1996)

    ADS  Google Scholar 

  9. S.A. Pawar, A. Seshadri, V.R. Unni, R.I. Sujith, J. Fluid Mech. 827, 664 (2017)

    ADS  MathSciNet  Google Scholar 

  10. L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 64, 821 (1990)

    ADS  MathSciNet  Google Scholar 

  11. L.M. Pecora, T.L. Carroll, G.A. Johnson, D.J. Mar, J.F. Heagy, Chaos 7, 520 (1997)

    ADS  MathSciNet  Google Scholar 

  12. A. Pikovsky, M. Rosenblum, J. Kurths,Synchronization: A universal concept in nonlinear sciences, 1st edn. (Cambridge University Press, New York, 2001)

  13. S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, Phys. Rep. 366, 1 (2002)

    ADS  MathSciNet  Google Scholar 

  14. A. Balanov, N. Janson, D. Postnov, O. Sosnovtseva,Synchronization: From Simple to Complex, 1st edn. (Springer Press, Berlin, 2008)

  15. A. Hampton, D.H. Zanette, Phys. Rev. Lett. 83, 2179 (1999)

    ADS  Google Scholar 

  16. S. Sur, A. Ghosh, Phys. Lett. A 384, 126176 (2020)

    MathSciNet  Google Scholar 

  17. H. Qiu, B. Juliá-Díaz, M.A. Garcia-March, A. Polls, Phys. Rev. A 90, 033603 (2014)

    ADS  Google Scholar 

  18. J. Tian, H. Qiu, G. Wang, Y. Chen, L. Fu, Phys. Rev. E 88, 032906 (2013)

    ADS  Google Scholar 

  19. H. Qiu, R. Zambrini, J. Juliá-Díaz, B. Polls, A. Martorell, Phys. Rev. A 92, 043619 (2015)

    ADS  Google Scholar 

  20. F. Bemani, A. Motazedifard, R. Roknizadeh, M.H. Naderi, D. Vitali, Phys. Rev. A 96, 023805 (2017)

    ADS  Google Scholar 

  21. T. Stojanovski, L. Kocarev, U. Parlitz, Phys. Rev. E 54, 2128 (1996)

    ADS  Google Scholar 

  22. M. Zochowski, Physica D 145, 181 (2000)

    ADS  Google Scholar 

  23. L. Chen, C. Qiu, H.B. Huang, Phys. Rev. E 79, 045101 (2009)

    ADS  Google Scholar 

  24. R. Jeter, I. Belykh, IEEE Trans. Circuits Syst. I 62, 1260 (2015)

    Google Scholar 

  25. M. Schröder, M. Mannattil, D. Dutta, S. Chakraborty, M. Timme, Phys. Rev. Lett. 115, 054101 (2015)

    ADS  Google Scholar 

  26. S. Li, N. Sun, L. Chen, X. Wang, Phys. Rev. E 98, 012304 (2018)

    ADS  Google Scholar 

  27. A. Hagberg, D.A. Schult, Chaos 18, 037105 (2008)

    ADS  MathSciNet  Google Scholar 

  28. L. Chen, C. Qiu, H.B. Huang, G.X. Qi, H.J. Wang, Eur. Phys. J. B 76, 625 (2010)

    ADS  Google Scholar 

  29. A. Kumar, V. Agrawal, S. Sinha, Eur. Phys. J. B 88, 138 (2015)

    ADS  Google Scholar 

  30. M. Schröder, S. Chakraborty, D. Witthaut, J. Nagler, M. Timme, Sci. Rep. 6, 37142 (2016)

    ADS  Google Scholar 

  31. J. Zhou, Y. Zou, S. Guan, Z. Liu, S. Boccaletti, Sci. Rep. 6, 35979 (2016)

    ADS  Google Scholar 

  32. R. Jeter, M. Porfiri, I. Belykh, Chaos 28, 071104 (2018)

    ADS  MathSciNet  Google Scholar 

  33. S. Nag Chowdhury, D. Ghosh, Europhys. Lett. 125, 10011 (2019)

    ADS  Google Scholar 

  34. A. Gomez-Marin, J. Garcia-Ojalvo, J.M. Sancho, Phys. Rev. Lett. 98, 168303 (2007)

    ADS  Google Scholar 

  35. P.C. Bressloff, S.D. Lawley, J. Nonlinear Sci. 27, 1487 (2017)

    ADS  MathSciNet  Google Scholar 

  36. J. Gou, W. Chiang, P. Lai, M.J. Ward, Y. Li, Physica D 339, 1 (2017)

    ADS  MathSciNet  Google Scholar 

  37. A. Tandon, M. Schröder, M. Mannattil, M. Timme, S. Chakraborty, Chaos 26, 094817 (2016)

    ADS  MathSciNet  Google Scholar 

  38. A. Ghosh, P. Godara, S. Chakraborty, Chaos 28, 053112 (2018)

    ADS  MathSciNet  Google Scholar 

  39. A. Ghosh, T. Shah, S. Chakraborty, Chaos 28, 123113 (2018)

    MathSciNet  Google Scholar 

  40. R. Jeter, I. Belykh, Dynamical networks with on-off stochastic connections: Beyond fast switching, in2014 IEEE International Symposium on Circuits and Systems (ISCAS), 2014, p. 1788

  41. O. Golovneva, R. Jeter, I. Belykh, M. Porfiri, Physica D 340, 1 (2017)

    ADS  MathSciNet  Google Scholar 

  42. M. Porfiri, I. Belykh, SIAM J. Appl. Dyn. Syst. 16, 1372 (2017)

    MathSciNet  Google Scholar 

  43. P.S. Landa, P.V.E. McClintock, J. Phys. A 33, L433 (2000)

    ADS  Google Scholar 

  44. T. Stojanovski, L. Kocarev, U. Parlitz, R. Harris, Phys. Rev. E 55, 4035 (1997)

    ADS  MathSciNet  Google Scholar 

  45. I.V. Belykh, V.N. Belykh, M. Hasler, Physica D 195, 188 (2004)

    ADS  MathSciNet  Google Scholar 

  46. S. Boccaletti, C. Grebogi, Y.C. Lai, H. Mancini, D. Maza, Phys. Rep. 329, 103 (2000)

    ADS  MathSciNet  Google Scholar 

  47. M.P. Juniper, R.I. Sujith, Annu. Rev. Fluid Mech. 50, 661 (2018)

    ADS  Google Scholar 

  48. S.C. Fisher, S.A. Rahman, NASA History Division, Remembering the Giants: Apollo Rocket Propulsion Development. Monographs in aerospace history, National Aeronautics and Space Administration, NASA History Division, Office of External Relations, 2009

  49. P.L. Rijke, Lond. Edinb. Dubl. Philos. Mag. 17, 419 (1859)

    Google Scholar 

  50. N. Thomas, S. Mondal, S.A. Pawar, R.I. Sujith, Chaos 28, 033119 (2018)

    ADS  MathSciNet  Google Scholar 

  51. E.R. Hunt, Phys. Rev. Lett. 67, 1953 1991

    ADS  Google Scholar 

  52. V. Petrov, B. Peng, K. Showalter, J. Chem. Phys. 96, 7506 (1992)

    ADS  Google Scholar 

  53. A. Garfinkel, M.L. Spano, W.L. Ditto, J.N. Weiss, Science 257, 1230 (1992)

    ADS  Google Scholar 

  54. T. Maiwald, E. Mammen, S. Nandi, J. Timmer, inSurrogate Data — A Qualitative and Quantitative Analysis (Springer, Berlin, 2008), p. 41

  55. G. Lancaster, D. Iatsenko, A. Pidde, V. Ticcinelli, A. Stefanovska, Phys. Rep. 748, 1 (2018)

    ADS  MathSciNet  Google Scholar 

  56. H. Kantz, T. Schreiber,Nonlinear Time Series Analysis, 2nd edn. (Cambridge University Press, New York, 2004)

  57. E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)

    ADS  Google Scholar 

  58. A. Stefański, P. Perlikowski, T. Kapitaniak, Phys. Rev. E 75, 016210 (2007)

    ADS  MathSciNet  Google Scholar 

  59. O.E. Rössler, Phys. Lett. A 57, 397 (1976)

    ADS  Google Scholar 

  60. J.-M. Malasoma, Phys. Lett. A 264, 383 (2000)

    ADS  MathSciNet  Google Scholar 

  61. J.C. Sprott,Chaos and Time-Series Analysis, 1st edn. (Oxford University Press, New York, 2003)

  62. G. Chen, T. Ueta, Int. J. Bifurc. Chaos 09, 1465 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Ghosh.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Chakraborty, S. Comprehending deterministic and stochastic occasional uncoupling induced synchronizations through each other. Eur. Phys. J. B 93, 113 (2020). https://doi.org/10.1140/epjb/e2020-100580-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100580-7

Keywords

Navigation