Skip to main content
Log in

Skyrmion dynamics and transverse mobility: skyrmion Hall angle reversal on 2D periodic substrates with dc and biharmonic ac drives

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We numerically examine the dynamics of a skyrmion interacting with a two-dimensional periodic substrate under dc and biharmonic ac drives. We show that the Magnus force of the skyrmion produces circular orbits that can resonate with the ac drive and the periodicity of the substrate to create quantized motion both parallel and perpendicular to the dc drive. The skyrmion Hall angle exhibits a series of increasing and/or decreasing steps along with strongly fluctuating regimes. In the phase locked regimes, the skyrmion Hall angle is constant and the skyrmion motion consists of periodic orbits encircling an integer number of obstacles per every or every other ac drive cycle. We also observe phases in which the skyrmion moves at 90° with respect to the driving direction even in the presence of damping, a phenomenon called absolute transverse mobility that can exhibit reentrance as a function of dc drive. When the biharmonic ac drives have different amplitudes in the two directions, we find regimes in which the skyrmion Hall angle shows a sign reversal from positive to negative, as well as a reentrant pinning effect in which the skyrmion is mobile at low drives but becomes pinned at higher drives. These behaviors arise due to the combination of the Magnus force with the periodic motion of the skyrmions, which produce Shapiro steps, directional locking, and ratchet effects.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura, V.V. Moshchalkov, Science 274, 1167 (1996)

    ADS  Google Scholar 

  2. C. Reichhardt, C.J. Olson, F. Nori, Phys. Rev. Lett. 78, 2648 (1997)

    ADS  Google Scholar 

  3. J.I. Martín, M. Vélez, A. Hoffmann, I.K. Schuller, J.L. Vicent, Phys. Rev. Lett. 83, 1022 (1999)

    ADS  Google Scholar 

  4. C. Reichhardt, C.J.O. Reichhardt, Phys. Rev. B 78, 224511 (2008)

    ADS  Google Scholar 

  5. J. Gutierrez, A.V. Silhanek, J. Van de Vondel, W. Gillijns, V.V. Moshchalkov, Phys. Rev. B 80, 140514 (2009)

    ADS  Google Scholar 

  6. I.A. Sadovskyy, Y.L. Wang, Z.L. Xiao, W.K. Kwok, A. Glatz, Phys. Rev. B 95, 075303 (2017)

    ADS  Google Scholar 

  7. J.Y. Ge, V.N. Gladilin, J. Tempere, J.T. Devreese, V.V. Moshchalkov, Nat. Commun. 9, 2576 (2018)

    ADS  Google Scholar 

  8. P.T. Korda, M.B. Taylor, D.G. Grier, Phys. Rev. Lett. 89, 128301 (2002)

    ADS  Google Scholar 

  9. M.P. MacDonald, G.C. Spalding, K. Dholakia, Nature (London) 426, 421 (2003)

    ADS  Google Scholar 

  10. T. Bohlein, J. Mikhael, C. Bechinger, Nat. Mater. 11, 126 (2012)

    ADS  Google Scholar 

  11. A. Vanossi, N. Manini, E. Tosatti, Proc. Natl. Acad. Sci. USA 109, 16429 (2012)

    ADS  Google Scholar 

  12. J. Hasnain, S. Jungblut, C. Dellago, Soft Matter 9, 5867 (2013)

    ADS  Google Scholar 

  13. D. McDermott, J. Amelang, C.J.O. Reichhardt, C. Reichhardt, Phys. Rev. E 88, 062301 (2013)

    ADS  Google Scholar 

  14. P. Tierno, F. Sagues, T.H. Johansen, T.M. Fischer, Phys. Chem. Chem. Phys. 11, 9615 (2009)

    Google Scholar 

  15. J. Loehr, D. de las Heras, A. Jarosz, M. Urbaniak, F. Stobiecki, A. Tomita, R. Huhnstock, I. Koch, A. Ehresmann, D. Holzinger et al., Commun. Phys. 1, 4 (2018)

    Google Scholar 

  16. X. Cao, E. Panizon, A. Vanossi, N. Manini, C. Bechinger, Nat. Phys. 15, 776 (2019)

    Google Scholar 

  17. R.L. Stoop, A.V. Straube, T.H. Johansen, P. Tierno, Phys. Rev. Lett. 124, 058002 (2020)

    ADS  Google Scholar 

  18. J. Tekić, O.M. Braun, B. Hu, Phys. Rev. E 71, 026104 (2005)

    ADS  Google Scholar 

  19. A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, E. Tosatti, Rev. Mod. Phys. 85, 529 (2013)

    ADS  Google Scholar 

  20. S. Shapiro, Phys. Rev. Lett. 11, 80 (1963)

    ADS  Google Scholar 

  21. A. Barone, G. Paterno,Physics and Applications of the Josephson effect (Wiley, New York, 1982)

  22. P. Martinoli, O. Daldini, C. Leemann, E. Stocker, Solid State Commun. 17, 205 (1975)

    ADS  Google Scholar 

  23. L. Van Look, E. Rosseel, M.J. Van Bael, K. Temst, V.V. Moshchalkov, Y. Bruynseraede, Phys. Rev. B 60, R6998 (1999)

    ADS  Google Scholar 

  24. C. Reichhardt, R.T. Scalettar, G.T. Zimányi, N. Grønbech-Jensen, Phys. Rev. B 61, R11914 (2000)

    ADS  Google Scholar 

  25. O.V. Dobrovolskiy, J. Supercond. Novel Mag. 28, 469 (2015)

    Google Scholar 

  26. M.P.N. Juniper, A.V. Straube, R. Besseling, D.G.A.L. Aarts, R.P.A. Dullens, Nat. Commun. 6, 7187 (2015)

    ADS  Google Scholar 

  27. T. Brazda, C. July, C. Bechinger, Soft Matter 13, 4024 (2017)

    ADS  Google Scholar 

  28. C. Reichhardt, A.B. Kolton, D. Domínguez, N. Grønbech-Jensen, Phys. Rev. B 64, 134508 (2001)

    ADS  Google Scholar 

  29. V.I. Marconi, A.B. Kolton, D. Domínguez, N. Grønbech-Jensen, Phys. Rev. B 68, 104521 (2003)

    ADS  Google Scholar 

  30. C. Reichhardt, C.J. Olson, Phys. Rev. B 65, 100501 (2002)

    ADS  Google Scholar 

  31. R. Guantes, S. Miret-Artés, Phys. Rev. E 67, 046212 (2003)

    ADS  Google Scholar 

  32. C. Reichhardt, C.J. Olson Reichhardt, Phys. Rev. E 68, 046102 (2003)

    ADS  Google Scholar 

  33. D. Speer, R. Eichhorn, P. Reimann, Phys. Rev. Lett. 102, 124101 (2009)

    ADS  Google Scholar 

  34. R. Chacón, A.M. Lacasta, Phys. Rev. E 82, 046207 (2010)

    ADS  MathSciNet  Google Scholar 

  35. A.K. Mukhopadhyay, B. Liebchen, P. Schmelcher, Phys. Rev. Lett. 120, 218002 (2018)

    ADS  Google Scholar 

  36. C. Reichhardt, C.J. Olson, Phys. Rev. B 65, 174523 (2002)

    ADS  Google Scholar 

  37. P. Tierno, T.H. Johansen, T.M. Fischer, Phys. Rev. Lett. 99, 038303 (2007)

    ADS  Google Scholar 

  38. A. Soba, P. Tierno, T.M. Fischer, F. Saguès, Phys. Rev. E 77, 060401 (2008)

    ADS  Google Scholar 

  39. P. Ao, D.J. Thouless, Phys. Rev. Lett. 70, 2158 (1993)

    ADS  Google Scholar 

  40. H. Yabu, H. Kuratsuji, Found. Phys. 27, 1585 (1997)

    ADS  MathSciNet  Google Scholar 

  41. A.J. Groszek, D.M. Paganin, K. Helmerson, T.P. Simula, Phys. Rev. A 97, 023617 (2018)

    ADS  Google Scholar 

  42. V.S. Pribiag, I.N. Krivorotov, G.D. Fuchs, P.M. Braganca, O. Ozatay, J.C. Sankey, D.C. Ralph, R.A. Buhrman, Nat. Phys. 3, 498 (2007)

    Google Scholar 

  43. M. Bolte, G. Meier, B. Krüger, A. Drews, R. Eiselt, L. Bocklage, S. Bohlens, T. Tyliszczak, A. Vansteenkiste, B. Van Waeyenberge et al., Phys. Rev. Lett. 100, 176601 (2008)

    ADS  Google Scholar 

  44. J. Wiersig, K.H. Ahn, Phys. Rev. Lett. 87, 026803 (2001)

    ADS  Google Scholar 

  45. M. Khoury, A.M. Lacasta, J.M. Sancho, A.H. Romero, K. Lindenberg, Phys. Rev. B 78, 155433 (2008)

    ADS  Google Scholar 

  46. B.C. van Zuiden, J. Paulose, W.T.M. Irvine, D. Bartolo, V. Vitelli, Proc. Natl. Acad. Sci. USA 113, 12919 (2016)

    ADS  Google Scholar 

  47. M. Han, J. Yan, S. Granick, E. Luijten, Proc. Natl. Acad. Sci. USA 114, 7513 (2017)

    ADS  Google Scholar 

  48. C. Reichhardt, C.J.O. Reichhardt, Phys. Rev. E 100, 012604 (2019)

    ADS  Google Scholar 

  49. S. Yazdi, J.L. Aragones, J. Coulter, A. Alexander-Katz (2020), https://arXiv:2002.06477

  50. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Science 323, 915 (2009)

    ADS  Google Scholar 

  51. X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Nature London 465, 901 (2010)

    ADS  Google Scholar 

  52. N. Nagaosa, Y. Tokura, Nat. Nanotechnol. 8, 899 (2013)

    ADS  Google Scholar 

  53. T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer, K. Everschor, M. Garst, A. Rosch, Nat. Phys. 8, 301 (2012)

    Google Scholar 

  54. J. Iwasaki, M. Mochizuki, N. Nagaosa, Nat. Commun. 4, 1463 (2013)

    ADS  Google Scholar 

  55. S. Woo, K. Litzius, B. Krüger, M.Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R.M. Reeve, M. Weigand et al., Nat. Mater. 15, 501 (2016)

    ADS  Google Scholar 

  56. J. Tekić, A.E. Botha, P. Mali, Y.M. Shukrinov, Phys. Rev. E 99, 022206 (2019)

    ADS  Google Scholar 

  57. L. Xiong, B. Zheng, M.H. Jin, N.J. Zhou, Phys. Rev. B 100, 064426 (2019)

    ADS  Google Scholar 

  58. C. Reichhardt, D. Ray, C.J.O. Reichhardt, Phys. Rev. B 91, 104426 (2015)

    ADS  Google Scholar 

  59. C. Reichhardt, D. Ray, C.J.O. Reichhardt, Phys. Rev. Lett. 114, 217202 (2015)

    ADS  Google Scholar 

  60. W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang et al., Nat. Phys. 13, 162 (2017)

    Google Scholar 

  61. K. Litzius, I. Lemesh, B. Krüger, P. Bassirian, L. Caretta, K. Richter, F. Büttner, K. Sato, O.A. Tretiakov, J. Förster et al., Nat. Phys. 13, 170 (2017)

    Google Scholar 

  62. W. Legrand, D. Maccariello, N. Reyren, K. Garcia, C. Moutafis, C. Moreau-Luchaire, S. Coffin, K. Bouzehouane, V. Cros, A. Fert, Nano Lett. 17, 2703 (2017)

    ADS  Google Scholar 

  63. K. Zeissler, S. Finizio, C. Barton, A.J. Huxtable, J. Massey, J. Raabe, A.V. Sadovnikov, S.A. Nikitov, R. Brearton, T. Hesjedal et al., Nat. Commun. 11, 428 (2020)

    ADS  Google Scholar 

  64. Y.H. Liu, Y.Q. Li, J. Phys.: Condens. Matter 25, 076005 (2013)

    ADS  Google Scholar 

  65. J. Müller, A. Rosch, Phys. Rev. B 91, 054410 (2015)

    ADS  Google Scholar 

  66. F. Büttner, C. Moutafis, M. Schneider, B. Krüger, C.M. Günther, J. Geilhufe, C.v.K. Schmising, J. Mohanty, B. Pfau, S. Schaffert et al., Nat. Phys. 11, 225 (2015)

    Google Scholar 

  67. J.C. Martinez, M.B.A. Jalil, New J. Phys. 18, 033008 (2016)

    ADS  Google Scholar 

  68. L. González-Gómez, J. Castell-Queralt, N. Del-Valle, A. Sanchez, C. Navau, Phys. Rev. B 100, 054440 (2019)

    ADS  Google Scholar 

  69. A. Salimath, A. Abbout, A. Brataas, A. Manchon, Phys. Rev. B 99, 104416 (2019)

    ADS  Google Scholar 

  70. J. Müller, New J. Phys. 19, 025002 (2017)

    ADS  Google Scholar 

  71. J. Castell-Queralt, L. Gonzalez-Gomez, N. Del-Valle, A. Sanchez, C. Navau, Nanoscale 11, 12589 (2019)

    Google Scholar 

  72. R. Tomasello, S. Komineas, G. Siracusano, M. Carpentieri, G. Finocchio, Phys. Rev. B 98, 024421 (2018)

    ADS  Google Scholar 

  73. A. Fert, N. Reyren, V. Cros, Nat. Rev. Mater. 2, 17031 (2017)

    ADS  Google Scholar 

  74. R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, G. Finocchio, Sci. Rep. 4, 6784 (2014)

    ADS  Google Scholar 

  75. D. Prychynenko, M. Sitte, K. Litzius, B. Krüger, G. Bourianoff, M. Kläui, J. Sinova, K. Everschor-Sitte, Phys. Rev. Appl. 9, 014034 (2018)

    ADS  Google Scholar 

  76. C. Reichhardt, C.J.O. Reichhardt, Phys. Rev. B 92, 224432 (2015)

    ADS  Google Scholar 

  77. C. Reichhardt, C.J.O. Reichhardt, Phys. Rev. B 95, 014412 (2017)

    ADS  Google Scholar 

  78. J. Feilhauer, S. Saha, J. Tobik, M. Zelent, L.J. Heyderman, M. Mruczkiewicz (2019), https://arXiv:1910.07388

  79. N.P. Vizarim, C. Reichhardt, C.J.O. Reichhardt, P.A. Venegas, New J. Phys. 22, 053025 (2020)

    ADS  Google Scholar 

  80. D. Stosic, T.B. Ludermir, M.V. Milošević, Phys. Rev. B 96, 214403 (2017)

    ADS  Google Scholar 

  81. I.L. Fernandes, J. Bouaziz, S. Blügel, S. Lounis, Nat. Commun. 9, 4395 (2018)

    ADS  Google Scholar 

  82. D. Toscano, S.A. Leonel, P.Z. Coura, F. Sato, J. Magn. Magn. Mater. 480, 171 (2019)

    ADS  Google Scholar 

  83. S. Saha, M. Zelent, S. Finizio, M. Mruczkiewicz, S. Tacchi, A.K. Suszka, S. Wintz, N.S. Bingham, J. Raabe, M. Krawczyk et al. (2019), https://arXiv:1910.04515

  84. R.M. Menezes, J.F.S. Neto, C.C.d.S. Silva, M.V. Milošević, Phys. Rev. B 100, 014431 (2019)

    ADS  Google Scholar 

  85. X. Palermo, N. Reyren, S. Mesoraca, A.V. Samokhvalov, S. Collin, F. Godel, A. Sander, K. Bouzehouane, J. Santamaria, V. Cros et al., Phys. Rev. Appl. 13, 014043 (2020)

    ADS  Google Scholar 

  86. W. Chen, L. Liu, Y. Ji, Y. Zheng, Phys. Rev. B 99, 064431 (2019)

    ADS  Google Scholar 

  87. W. Chen, L. Liu, Y. Zheng (2020), https://arXiv:2002.08865

  88. S.Z. Lin, C. Reichhardt, C.D. Batista, A. Saxena, Phys. Rev. B 87, 214419 (2013)

    ADS  Google Scholar 

  89. B.L. Brown, U.C. Täuber, M. Pleimling, Phys. Rev. B 100, 024410 (2019)

    ADS  Google Scholar 

  90. M.P. Allen, D.J. Tildesley,Computer Simulation of Liquids (Oxford University Press, Oxford, 1987)

  91. P. Mali, A. Šakota, J. Tekić, S. Radošević, M. Pantić, M. Pavkov-Hrvojević, Phys. Rev. E 101, 032203 (2020)

    ADS  Google Scholar 

  92. S.A. Díaz, C.J.O. Reichhardt, D.P. Arovas, A. Saxena, C. Reichhardt, Phys. Rev. B 96, 085106 (2017)

    ADS  Google Scholar 

  93. T. Sato, W. Koshibae, A. Kikkawa, T. Yokouchi, H. Oike, Y. Taguchi, N. Nagaosa, Y. Tokura, F. Kagawa, Phys. Rev. B 100, 094410 (2019)

    ADS  Google Scholar 

  94. C. Reichhardt, C.J. Olson Reichhardt, Phys. Rev. E 73, 011102 (2006)

    ADS  Google Scholar 

  95. C. Reichhardt, C.J.O. Reichhardt, Phys. Rev. B 76, 094512 (2007)

    ADS  Google Scholar 

  96. M. Kemmler, D. Bothner, K. Ilin, M. Siegel, R. Kleiner, D. Koelle, Phys. Rev. B 79, 184509 (2009)

    ADS  Google Scholar 

  97. Q. Le Thien, D. McDermott, C.J.O. Reichhardt, C. Reichhardt, Phys. Rev. B 96, 094516 (2017)

    ADS  Google Scholar 

  98. N.P. Vizarim, C.J.O. Reichhardt, P.A. Venegas, C. Reichhardt (2020), https://arXiv:2004.10819

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia J. O. Reichhardt.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vizarim, N.P., Reichhardt, C.J.O., Venegas, P.A. et al. Skyrmion dynamics and transverse mobility: skyrmion Hall angle reversal on 2D periodic substrates with dc and biharmonic ac drives. Eur. Phys. J. B 93, 112 (2020). https://doi.org/10.1140/epjb/e2020-10135-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10135-1

Keywords

Navigation