Skip to main content
Log in

The Overall Survival of Breast Cancer Patients Depends on a Combination of Polymorphisms of Tumor Necrosis Factor Gene and HLA Haplotypes

  • EXPERIMENTAL WORKS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Tumor necrosis factor (TNF) is a proinflammatory cytokine involved in the pathogenesis of a number of diseases, including oncological and autoimmune diseases. The –308(g/a)TNF and –238(G/A)TNF polymorphisms are included in the extended ancestral haplotypes covering the whole complex of HLA genes. We assumed that the previously found effect of these polymorphisms on the overall survival (OS) of breast cancer (BC) patients may be a consequence of cooperation with the genomic environment, namely, with the AH8.1 and B57 haplotypes associated with autoimmune conditions. The archival collection of DNA from 442 primary BC patients and 327 women from the control group with known –308(g/a)TNF and –238(G/A)TNF genotypes was used in the work. Four hundred and twelve BC patients were tested for AH8.1 and B57 markers. During the study, the association of –308a and –238A alleles of the TNF gene with haplotypes AH8.1 and B57, respectively, was confirmed. Analysis of the results of the study demonstrated that TNF gene polymorphisms do not affect the predisposition to BC disease, but significantly decrease the OS of BC patients; moreover, the final effect of the TNF gene polymorphisms on the disease prognosis depends on genomic context. At stage II of the disease, the carriers of the –308ag/–238GG genotype in the presence of marker AH8.1 alleles and the –308gg/–238GG carriers, regardless of AH8.1 markers, had a 10-year OS above 80%, while a 10-year OS was lower than 50% in the –308ag/–238GG carriers in the absence of AH8.1 markers and in the –308gg/–238AG genotype carriers (p = 0.0076). The mechanisms of action of –308(g/a)TNF and ‒238(G/A)TNF differ, and a decrease in OS in the carriers of minor –238A allele is mediated by its association with HLA-B*57, while a decrease in OS in the carriers of –308a, on the contrary, is not associated with the ancestral AH8.1 haplotype. Thus, two genetically determined BC patient groups that have an unfavorable prognosis in conditions of standard BC therapy were detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Waters, J.P., Pober, J.S., and Bradley, J.R., Tumor necrosis factor and cancer, J. Pathol., 2013, vol. 230, no. 3, pp. 241–248. https://doi.org/10.1002/path.4188

    Article  CAS  PubMed  Google Scholar 

  2. El-Tahan, R.R., Ghoneim, A.M., and El-Mashad, N., TNF-α gene polymorphisms and expression, SpringerPlus, 2016, vol. 5, no. 1, p. 1508. https://doi.org/10.1186/s40064-016-3197-y

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hajeer, A.H. and Hutchinson, I.V., TNF-alpha gene polymorphism: Clinical and biological implications, Microsc. Res. Tech., 2000, vol. 50, no. 3, pp. 216–228. https://doi.org/10.1002/1097-0029(20000801)50:3<216::AIDJEMT5>3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  4. Elahi, M.M., Asotra, K., Matata, B.M., and Mastana, S.S., Tumor necrosis factor alpha-308 gene locus promoter polymorphism: An analysis of association with health and disease, Biochim. Biophys. Acta, 2009, vol. 1792, no. 3, pp. 163–172. https://doi.org/10.1016/j.bbadis.2009.01.007

    Article  CAS  PubMed  Google Scholar 

  5. Aly, T.A., Eller, E., Ide, A., Gowan, K., Babu, S.R., Erlich, H.A., et al., Multi-SNP analysis of MHC region: remarkable conservation of HLA-A1-B8-DR3 haplotype, Diabetes, 2006, vol. 55, no. 5, pp. 1265–1269. https://doi.org/10.2337/db05-1276

    Article  CAS  PubMed  Google Scholar 

  6. Merino, A.M., Zhang, K., Kaslow, R.A., and Aissani, B., Structure of tumor necrosis factor-alpha haploblocks in European populations, Immunogenetics, 2013, vol. 65, no. 7, pp. 543–552. https://doi.org/10.1007/s00251-013-0700-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martinez-Reza, I., Diaz, L., and Garcia-Becerra, R.J., Preclinical and clinical aspects of TNF-α and its receptors TNFR1 and TNFR2 in breast cancer, J. Biomed. Sci., 2017, vol. 24, no. 1, p. 90. https://doi.org/10.1186/s12929-017-0398-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Malivanova, T.F., Yurchenko, V.A., Skoromyslova, E.V., and Mazurenko, N.N., How –308(G/A)TNF polymorphism influences onto overall survival of breast cancer patients, J. N.N. Blokhin Russ. Cancer Res. Cent. RAMS, 2012, vol. 23, no. 1, pp. 40–44. https://elibrary.ru/ item.asp?id=17901571. Accessed August 12, 2019.

    Google Scholar 

  9. Malivanova, T.F., Skoromyslova, E.V., Yurchenko, V.A., Kononenko, I.V., Manzyuk, L.V., and Mazurenko, N.N., Analysis of the  –238(G/A)TNF polymorphism in breast cancer patients, Mol. Genet., Microbiol. Virol., 2013, vol. 28, no. 2, pp. 52–55. https://doi.org/10.3103/S0891416813020031

    Article  Google Scholar 

  10. Malivanova, T.F., Ostashkin, A.S., and Mazurenko, N.N., The connection of polymorphisms  –238(A/G)TNF and Ile655Val HER2 influences the risk and molecular features of breast cancer, Mol. Genet., Microbiol. Virol., 2017, vol. 32, no. 3, pp. 141–147. https://doi.org/10.3103/S0891416817030053

    Article  Google Scholar 

  11. Tonks, S., Marsh, S.G., Bunce, M., and Bodmer, J.G., Molecular typing for HLA class I using ARMS-PCR: further developments following the 12th International Histocompatibility Workshop, Tissue Antigens, 1999, vol. 53, no. 2, pp. 175–183. https://doi.org/10.1034/j.1399-0039.1999.530208.x

    Article  CAS  PubMed  Google Scholar 

  12. Cascella, R., Strafella, C., Ragazzo, M., Zampatti, S., Borgiani, P., Gambardella, S., et al., Direct PCR: A new pharmacogenetic approach for the inexpensive testing of HLA-B*57:01, Pharmacogenomics J., 2015, vol. 15, no. 2, pp. 196–200. https://doi.org/10.1038/tpj.2014.48

    Article  CAS  PubMed  Google Scholar 

  13. Ma, S., Wu, J., Wu, J., Wei, Y., Zhang, L., Ning, Q., and Hu, D., Relationship between HLA-DRB1 allele polymorphisms and familial aggregations of hepatocellular carcinoma, Curr. Oncol., 2016, vol. 23, no. 1, pp. 1–7. https://doi.org/10.3747/co.23.2839

    Article  CAS  Google Scholar 

  14. Perrey, C., Turner, S.J., Pravica, V., Howell, W.M., and Hutchinson, I.V., ARMS-PCR methodologies to determine IL-10, TNF-alpha, TNF-beta and TGF-beta 1 gene polymorphisms, Transplant Immunol., 1999, vol. 7, no. 2, pp. 127–128. https://doi.org/10.1016/S0966-3274(99)80030-6

    Article  CAS  Google Scholar 

  15. Williams, F., Meenagh, A., Single, R., McNally, M., Kelly, P., Nelson, M.P., et al., High resolution HLA-DRB1 identification of a Caucasian population, Hum. Immunol., 2004, vol. 65, no. 1, pp. 66–77. https://doi.org/10.1016/j.humimm.2003.10.004

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Q., Zhao, G.S., Yuan, X.L., Li, X.H., Yang, Z., Cui, Y.F., et al., Tumor necrosis factor alpha-238G/A polymorphism and risk of breast cancer: An update by meta-analysis, Medicine (Baltimore), 2017, vol. 96, no. 29, p. e7442. https://doi.org/10.1097/MD.0000000000007442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jin, G., Zhao, Y., Sun, S., and Kang, H., Association between the tumor necrosis factor alpha gene –308G>A polymorphism and the risk of breast cancer: a meta-analysis, Tumor Biol., 2014, vol. 35, no. 12, pp. 12 091–12 098. https://doi.org/10.1007/s13277-014-2510-z

    Article  CAS  Google Scholar 

  18. Mestiri, S., Bouaouina, N., Ahmed, S.B., Khedhaier, A., Jrad, B.B., Remadi, S., and Chouchane, L., Genetic variation in the tumor necrosis factor-alpha promoter region and in the stress protein hsp70-2: Susceptibility and prognostic implications in breast carcinoma, Cancer, 2001, vol. 91, no. 4, pp. 672–678. https://doi.org/10.1002/1097-0142(20010215)91:4<672::AID-CNCR1050>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  19. DeMichele, A., Martin, A.M., Mick, R., Gor, P., Wray, L., Klein-Cabral, M., et al., Interleukin-6-174G–>C polymorphism is associated with improved outcome in high-risk breast cancer, Cancer Res., 2003, vol. 63, no. 22, pp. 8051–8056. http://cancerres.aacrjournals.org/content/63/22/8051.full-text.pdf. Accessed August 12, 2019.

    CAS  PubMed  Google Scholar 

  20. Duggan, C., Baumgartner, R.N., Baumgartner, K.B., Bernstein, L., George, S., Ballard, R., et al., Genetic variation in TNFα, PPARγ, and IRS-1 genes, and their association with breast-cancer survival in the HEAL cohort, Breast Cancer Res. Treat., 2018, vol. 168, no. 2, pp. 567–576. https://doi.org/10.1007/s10549-017-4621-x

    Article  CAS  PubMed  Google Scholar 

  21. Korobeinikova, E., Myrzaliyeva, D., Ugenskiene, R., Raulinaityte, D., Gedminaite, J., Smigelskas, K., and Juozaityte, E., The prognostic value of IL10 and TNF alpha functional polymorphisms in premenopausal early-stage breast cancer patients, BMC Genet., 2015, vol. 16, p. 70. https://doi.org/10.1186/s12863-015-0234-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Park, H.S., Cho, U., Im, S.Y., Yoo, C.Y., Jung, J.H., Suh, Y.J., and Choi, H.J., Loss of human leukocyte antigen class I expression is associated with poor prognosis in patients with advanced breast cancer, J. Pathol. Transl. Med., 2019, vol. 53, no. 2, pp. 75–85. https://doi.org/10.4132/jptm.2018.10.11

    Article  PubMed  Google Scholar 

  23. Axelrod, M.L., Cook, R.S., Johnson, D.B., and Balko, J.M., Biological consequences of MHC-II expression by tumor cells in cancer, Clin. Cancer Res., 2019, vol. 25, no. 8, pp. 2392–2402. https://doi.org/10.1158/1078-0432.CCR-18-3200

    Article  PubMed  Google Scholar 

  24. Simpson, P.D., Moysi, E., Wicks, K., Sudan, K., Rowland-Jones, S.L., McMichael, A.J., et al., Functional differences exist between TNFα promoters encoding the common  –237G SNP and the rarer HLA-B*5701-linked A variant, PLoS One, 2012, vol. 7, no. 7, p. e40 100. https://doi.org/10.1371/journal.pone.0040100

    Article  CAS  Google Scholar 

  25. Raposo, R.A., Abdel-Mohsen, M., Holditch, S.J., Kuebler, P.J., Cheng, R.G., Eriksson, E.M., et al., Increased expression of intrinsic antiviral genes in HLA-B*57-positive individuals, J. Leukocyte Biol., 2013, vol. 94, no. 5, pp. 1051–1059. https://doi.org/10.1189/jlb.0313150

    Article  CAS  PubMed  Google Scholar 

  26. Ng, J.C.F., Quist, J., Grigoriadis, A., Malim, M.H., and Fraternali, F., Pan-cancer transcriptomic analysis dissects immune and proliferative functions of APOBEC3 cytidine deaminases, Nucleic Acids Res., 2019, vol. 47, no. 3, pp. 1178–1194. https://doi.org/10.1093/nar/gky1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tokunaga, E., Yamashita, N., Tanaka, K., Inoue, Y., Akiyoshi, S., Saeki, H., et al., Expression of APOBEC3B mRNA in primary breast cancer of Japanese women, PLoS One, 2016, vol. 11, no. 12, p. e0 168 090. https://doi.org/10.1371/journal.pone.0168090

    Article  CAS  Google Scholar 

  28. Sieuwerts, A.M., Schrijver, W.A., Dalm, S.U., de Weerd, V., Moelans, C.B., Ter Hoeve, N., et al., Progressive APOBEC3B mRNA expression in distant breast cancer metastases, PLoS One, 2017, vol. 12, no. 1, p. e0 171 343. https://doi.org/10.1371/journal.pone.0171343

    Article  CAS  Google Scholar 

  29. Kanu, N., Cerone, M.A., Goh, G., Zalmas, L.P., Bartkova, J., Dietzen, M., et al., DNA replication stress mediates APOBEC3 family mutagenesis in breast cancer, Genome Biol., 2016, vol. 17, no. 1, p. 185. https://doi.org/10.1186/s13059-016-1042-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. F. Malivanova, E. V. Alferova, A. S. Ostashkin, T. A. Astrelina or N. N. Mazurenko.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

ADDITIONAL INFORMATION

Malivanova T.F., e-mail: tmalivanova@yandex.ru; https://orcid.org/0000-0001-9699-2603

Alferova E.V., e-mail: skoromyslovalena@yandex.ru; https://orcid.org/0000-0002-3423-9816

Ostashkin A.S., e-mail: ostashkin@yandex.ru; https://orcid.org/0000-0002-5809-0075

Astrelina T.A., e-mail: t_astrelina@mail.ru; https://orcid.org/0000-0003-3629-0372

Mazurenko N.N., e-mail: nnmazurenko@mail.ru; https://orcid.org/0000-0003-4767-6983

Corresponding author: Malivanova T.F., e-mail: tmalivanova@yandex.ru

To cite this article:

Malivanova T.F., Alferova E.V., Ostashkin A.S., Astrelina T.A., Mazurenko N.N. “Breast cancer patients’ overall survival depends on a combination of the polymorphisms of tumor necrosis factor gene and HLA-haplotypes.” Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya (Molecular Genetics, Microbiology, and Virology), 2020, vol. 38, no. 1, pp. 4–49 (Russian). https://doi.org/10.17116/molgen20203801141

Additional information

Translated by A. Barkhash

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malivanova, T.F., Alferova, E.V., Ostashkin, A.S. et al. The Overall Survival of Breast Cancer Patients Depends on a Combination of Polymorphisms of Tumor Necrosis Factor Gene and HLA Haplotypes. Mol. Genet. Microbiol. Virol. 35, 38–46 (2020). https://doi.org/10.3103/S0891416820010061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416820010061

Keywords:

Navigation