Skip to main content
Log in

The Type Three Secretion System of Pseudomonas aeruginosa as a Target for Development of Antivirulence Drugs

  • REVIEWS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is one of the leading antibiotic-resistant gram-negative organisms responsible for nosocomial infections. Multidrug pathogen resistance leads to the low antibiotic therapy efficiency. The solution for this problem involves developing new therapeutic agents that operate under different principles to the currently available antibiotics. The Type Three Secretion System (T3SS) is a major virulence factor in Pseudomonas aeruginosa. This review presents a brief description of structure and regulation of T3SS, which has been shown to contribute to the virulence of Gram-negative bacteria with different types of parasitism and is extremely necessary for the manifestation of the pathogenesis of diseases caused by them. The secretion apparatus is formed after bacteria contact with eukaryotic cell and allows the bacterium to inject toxins directly into the host cell cytoplasm. The T3SS regulation is a strictly hierarchically organized process that occurs at least at two levels, transcriptional and secretory. Thus, T3SS appears to be a highly attractive target for innovative therapies as it possesses a number of advantages over antibiotics: T3SS inhibitors are expected to have a lower risk of selecting resistance because they do not suppress the viability of pathogens, but only reduce bacterial virulence; inhibitors will be effective regardless of acquired antibiotic resistance; inhibitors will not to exert negligible effects on commensal bacteria. To date, a number of T3SS inhibitors with various nature and different mechanism of action have been identified. The discovered inhibitors suppress the transcription of the T3SS genes, toxins translocation and inhibit the effector molecules. For many of the developed inhibitors, their specific activity was shown in in vitro experiments, for few of them the antibacterial effect was shown in animal models and only two inhibitors are ongoing to test in clinical trials now: the Ftortiazinon and the antibodies MEDI3902.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Weiss, E., Essaied, W., Adrie, C., Zahar, J.R., and Timsit, J.F., Treatment of severe hospital-acquired and ventilator-associated pneumonia: A systematic review of inclusion and judgment criteria used in randomized controlled trials, Crit. Care, 2017, vol. 21, no. 1, p. 162. https://doi.org/10.1186/s13054-017-1755-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Weiner, L.M., Webb, A.K., Limbago, B., Dudeck, M.A., Patel, J., Kallen, A.J., et al., Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, Infect. Control Hosp. Epidemiol., 2016, vol. 37, no. 11, pp. 1288–1301. https://doi.org/10.1016/j.diagmicrobio.2011.07.013

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rasko, D.A. and Sperandio, V., Anti-virulence strategies to combat bacteria-mediated disease, Nat. Rev. Drug Discovery, 2010, vol. 9, no. 2, p. 117. https://doi.org/10.1038/nrd3013

    Article  CAS  PubMed  Google Scholar 

  4. El-Solh, A.A., Hattemer, A., Hauser, A.R., Alhajhusain, A., and Vora, H., Clinical outcomes of type III Pseudomonas aeruginosa bacteremia, Crit. Care Med., 2012, vol. 40, no. 4, p. 1157. https://doi.org/10.1097/CCM.0b013e3182377906

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hauser, A.R., Cobb, E., Bodí, M., Mariscal, D., Vallés, J., Engel, J.N., et al., Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa, Crit. Care Med., 2002, vol. 30, no. 3, pp. 521–528.

    Article  CAS  Google Scholar 

  6. Hauser, A.R., The type III secretion system of Pseudomonas aeruginosa: Infection by injection, Nat. Rev. Microbiol., 2009, vol. 7, no. 9, p. 654. https://doi.org/10.1038/nrmicro2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cornelis, G.R. and Van Gijsegem, F., Assembly and function of type III secretory systems, Annu. Rev. Microbiol., 2000, vol. 54, no. 1, pp. 735–774. https://doi.org/10.1146/annurev.micro.54.1.735

    Article  CAS  PubMed  Google Scholar 

  8. Deng, W., Marshall, N.C., Rowland, J.L., McCoy, J.M., Worrall, L.J., Santos, A.S., et al., Assembly, structure, function and regulation of type III secretion systems, Nat. Rev. Microbiol., 2017, vol. 15, no. 6, p. 323. https://doi.org/10.1038/nrmicro.2017.125

    Article  CAS  PubMed  Google Scholar 

  9. Zilkenat, S., Franz-Wachtel, M., Stierhof, Y.D., Galán, J.E., Macek, B., and Wagner, S., Determination of the stoichiometry of the complete bacterial type III secretion needle complex using a combined quantitative proteomic approach, Mol. Cell. Proteomics, 2016, vol. 15, no. 5, pp. 1598–1609. https://doi.org/10.1074/mcp.M115.056598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Halder, P.K., Roy, C., and Datta, S., Structural and functional characterization of type three secretion system ATPase PscN and its regulator PscL from Pseudomonas aeruginosa, Proteins: Struct., Funct.,Bioinf., 2019, vol. 87, no. 4, pp. 276–288. https://doi.org/10.1002/prot.25648

    Article  CAS  Google Scholar 

  11. Worrall, L.J., Hong, C., Vuckovic, M., Deng, W., Bergeron, J.R.C., Majewski, D.D., et al., Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body, Nature, 2016, vol. 540, no. 7634, p. 597. https://doi.org/10.1038/nature20576

    Article  CAS  PubMed  Google Scholar 

  12. Lombardi, C., Tolchard, J., Bouillot, S., Signor, L., Gebus, C., Liebl, D., et al., Structural and functional characterization of the Type Three Secretion System (T3SS) needle of Pseudomonas aeruginosa, Front. Microbiol., 2019, vol. 10, p. 573. https://doi.org/10.3389/fmicb.2019.00573

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wood, S.E., Jin, J., and Lloyd, S.A., YscP and YscU switch the substrate specificity of the Yersinia type III secretion system by regulating export of the inner rod protein YscI, J. Bacteriol., 2008, vol. 190, no. 12, pp. 4252–4262. https://doi.org/10.1128/JB.00328-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matteï, P.J., Faudry, E., Job, V., Izoré, T., Attree, I., and Dessen, A., Membrane targeting and pore formation by the type III secretion system translocon, FEBS J., 2011, vol. 278, no. 3, pp. 414–426. https://doi.org/10.1111/j.1742-4658.2010.07974.x

    Article  CAS  PubMed  Google Scholar 

  15. Diaz, M.R., King, J.M., and Yahr, T.L., Intrinsic and extrinsic regulation of type III secretion gene expression in Pseudomonas aeruginosa, Front. Microbiol., 2011, vol. 2, p. 89. https://doi.org/10.3389/fmicb.2011.00089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Intile, P.J., Balzer, G.J., Wolfgang, M.C., and Yahr, T.L., The RNA helicase DeaD stimulates ExsA translation to promote expression of the Pseudomonas aeruginosa type III secretion system, J. Bacteriol., 2015, vol. 197, no. 16, pp. 2664–2674. https://doi.org/10.1128/JB.00231-15

    Article  CAS  PubMed  Google Scholar 

  17. Marsden, A.E., Intile, P.J., Schulmeyer, K.H., Simmons-Patterson, E.R., Urbanowski, M.L., Wolfgang, M.C., et al., Vfr directly activates exsA transcription to regulate expression of the Pseudomonas aeruginosa type III secretion system, J. Bacteriol., 2016, vol. 198, no. 9, pp. 1442–1450. https://doi.org/10.1128/JB.00049-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shen, D.K., Filopon, D., Kuhn, L., Polack, B., and Toussaint, B., PsrA is a positive transcriptional regulator of the type III secretion system in Pseudomonas aeruginosa, Infect. Immun., 2006, vol. 74, no. 2, pp. 1121–1129. https://doi.org/10.1128/IAI.74.2.1121-1129.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ho, O., Rogne, P., Edgren, T., Wolf-Watz, H., Login, F.H., and Wolf-Watz, M., Characterization of the ruler protein interaction interface on the substrate specificity switch protein in the Yersinia type III secretion system, J. Biol. Chem., 2017, vol. 292, no. 8, pp. 3299–3311. https://doi.org/10.1074/jbc.M116.770255

    Article  CAS  PubMed  Google Scholar 

  20. Lee, P.C., Zmina, S.E., Stopford, C.M., Toska, J., and Rietsch, A., Control of type III secretion activity and substrate specificity by the cytoplasmic regulator PcrG, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 19, pp. 2027–2036. https://doi.org/10.1073/pnas.1402658111

    Article  CAS  Google Scholar 

  21. Sato, H. and Frank, D.W., ExoU is a potent intracellular phospholipase, Mol. Microbiol., 2004, vol. 53, no. 5, pp. 1279–1290. https://doi.org/10.1111/j.1365-2958.2004.04194.x

    Article  CAS  PubMed  Google Scholar 

  22. Jia, J., Wang, Y., Zhou, L., and Jin, S., Expression of Pseudomonas aeruginosa toxin ExoS effectively induces apoptosis in host cells, Infect. Immun., 2006, vol. 74, no. 12, pp. 6557–6570. https://doi.org/10.1128/IAI.00591-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wood, S.J., Goldufsky, J.W., Bello, D., Masood, S., and Shafikhani, S.H., Pseudomonas aeruginosa ExoT induces mitochondrial apoptosis in target host cells in a manner that depends on its GTPase-activating protein (GAP) domain activity, J. Biol. Chem., 2015, vol. 290, no. 486, pp. 29 063–29 073. https://doi.org/10.1074/jbc.M115.689950

    Article  CAS  Google Scholar 

  24. Hritonenko, V., Mun, J.J., Tam, C., Simon, N.C., Barbieri, J.T., Evans, D.J., et al., Adenylate cyclase activity of Pseudomonas aeruginosa ExoY can mediate bleb-niche formation in epithelial cells and contributes to virulence, Microb. Pathog., 2011, vol. 51, no. 5, pp. 305–312. https://doi.org/10.1016/j.micpath.2011.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kauppi, A.M., Nordfelth, R., Uvell, H., Wolf-Watz, H., and Elofsson, M., Targeting bacterial virulence: Inhibitors of type III secretion in Yersinia, Chem. Biol., 2003, vol. 10, no. 3, pp. 241–249. https://doi.org/10.1016/S1074-5521(03)00046-2

    Article  CAS  PubMed  Google Scholar 

  26. Anantharajah, A., Buyck, J.M., Sundin, C., Tulkens, P.M., Mingeot-Leclercq, M.P., and Van Bambeke, F., Salicylidene acylhydrazides and hydroxyquinolines act as inhibitors of type three secretion systems in Pseudomonas aeruginosa by distinct mechanisms, Antimicrob. Agents Chemother., 2017, vol. 61, no. 6, p. e02 566-16. https://doi.org/10.1128/AAC.02566-16

    Article  Google Scholar 

  27. Gu, L., Zhou, S., Zhu, L., Liang, C., and Chen, X., Small-molecule inhibitors of the type III secretion system, Molecules, 2015, vol. 20, no. 9, pp. 17 659–17 674. https://doi.org/10.3390/molecules200917659

    Article  CAS  Google Scholar 

  28. Kimura, K., Iwatsuki, M., Nagai, T., Matsumoto, A., Takahashi, Y., Shiomi, K., et al., A small-molecule inhibitor of the bacterial type III secretion system protects against in vivo infection with Citrobacter rodentium, J. Antibiot., 2011, vol. 64, no. 2, pp. 197–203. https://doi.org/10.1038/ja.2010.155

    Article  CAS  PubMed  Google Scholar 

  29. Slepenkin, A., Chu, H., Elofsson, M., Keyser, P., and Peterson, E.M., Protection of mice from a Chlamydia trachomatis vaginal infection using a salicylidene acylhydrazide, a potential microbicide, J. Antibiot., 2011, vol. 64, no. 2, pp. 197–203. https://doi.org/10.1093/infdis/jir552

    Article  CAS  Google Scholar 

  30. Uusitalo, P., Hägglund, U., Rhöös, E., Norberg, H.S., Elofsson, M., and Sundin, C., The salicylidene acylhydrazide INP0341 attenuates Pseudomonas aeruginosa virulence in vitro and in vivo, J. Antibiot., 2017, vol. 70, no. 9, pp. 937–943. https://doi.org/10.1038/ja.2017.64

    Article  CAS  PubMed  Google Scholar 

  31. Kim, O.K., Garrity-Ryan, L.K., Bartlett, V.J., Grier, M.C., Verma, A.K., Medjanis, G., et al., N-Hydroxybenzimidazole inhibitors of the transcription factor LcrF in Yersinia: Novel antivirulence agents, J. Med. Chem., 2009, vol. 52, no. 18, pp. 5626–5634. https://doi.org/10.1021/jm9006577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grier, M.C., Garrity-Ryan, L.K., Bartlett, V.J., Klausner, K.A., Donovan, P.J., Dudley, C., et al., N-Hydroxybenzimidazole inhibitors of ExsA MAR transcription factor in Pseudomonas aeruginosa: In vitro anti-virulence activity and metabolic stability, Bioorg. Med. Chem. Lett., 2010, vol. 20, no. 11, pp. 3380–3383. https://doi.org/10.1016/j.bmcl.2010.04.014

    Article  CAS  PubMed  Google Scholar 

  33. Marsden, A.E., King, J.M., Spies, M.A., Kim, O.K., and Yahr, T.L., Inhibition of Pseudomonas aeruginosa ExsA DNA-binding activity by N-hydroxybenzimidazoles, Antimicrob. Agents Chemother., 2016, vol. 60, no. 2, pp. 766–776. https://doi.org/10.1128/AAC.02242-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamazaki, A., Li, J., Zeng, Q., Khokhani, D., Hutchins, W.C., Yost, A.C., et al., Derivatives of plant phenolic compound affect the type III secretion system of Pseudomonas aeruginosa via a GacS-GacA two-component signal transduction system, Antimicrob. Agents Chemother., 2012, vol. 56, no. 1, pp. 36–43. https://doi.org/10.1128/AAC.00732-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Enquist, P.A., Gylfe, Å., Hägglund, U., Lindström, P., Norberg-Scherman, H., Sundin, C., et al., Derivatives of 8-hydroxyquinoline—antibacterial agents that target intra-and extracellular Gram-negative pathogens, Bioorg. Med. Chem. Lett., 2012, vol. 22, no. 10, pp. 3550–3553. https://doi.org/10.1016/j.bmcl.2012.03.096

    Article  CAS  PubMed  Google Scholar 

  36. Rietsch, A., Vallet-Gely, I., Dove, S.L., and Mekalanos, J.J., ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, no. 22, pp. 8006–8011. https://doi.org/10.1073/pnas.0503005102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anantharajah, A., Faure, E., Buyck, J.M., Sundin, C., Lindmark, T., Mecsas, J., et al., Inhibition of the injectisome and flagellar type III secretion systems by INP1855 impairs Pseudomonas aeruginosa pathogenicity and inflammasome activation, J. Infect. Dis., 2016, vol. 214, no. 7, pp. 1105–1116. https://doi.org/10.1093/infdis/jiw295

    Article  CAS  PubMed  Google Scholar 

  38. Anantharajah, A., Buyck, J.M., Faure, E., Glupczynski, Y., Rodriguez-Villalobos, H., De Vos, D., et al., Correlation between cytotoxicity induced by Pseudomonas aeruginosa clinical isolates from acute infections and IL-1β secretion in a model of human THP-1 monocytes, Pathog. Dis., 2015, vol. 73, no. 7, p. ftv049. https://doi.org/10.1093/femspd/ftv049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Felise, H.B., Nguyen, H.V., Pfuetzner, R.A., Barry, K.C., Jackson, S.R., Blanc, M.P., et al., An inhibitor of Gram-negative bacterial virulence protein secretion, Cell Host Microbe, 2008, vol. 4, no. 4, pp. 325–336. https://doi.org/10.1016/j.chom.2008.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tosi, T., Estrozi, L.F., Job, V., Guilvout, I., Pugsley, A.P., Schoehn, G., et al., Structural similarity of secretins from type II and type III secretion systems, Structure, 2013, vol. 21, no. 11, pp. 1979–1991. https://doi.org/10.1016/j.str.2014.07.005

    Article  CAS  Google Scholar 

  41. Tsou, L.K., Dossa, P.D., and Hang, H.C., Small molecules aimed at type III secretion systems to inhibit bacterial virulence, MedChemComm, 2013, vol. 4, no. 1, pp. 68–79. https://doi.org/10.1039/C2MD20213A

    Article  CAS  PubMed  Google Scholar 

  42. Arnoldo, A., Curak, J., Kittanakom, S., Chevelev, I., Lee, V.T., Sahebol-Amri, M., et al., Identification of small molecule inhibitors of Pseudomonas aeruginosa exoenzyme S using a yeast phenotypic screen, PLoS Genet., 2008, vol. 4, no. 2. https://doi.org/10.1371/journal.pgen.1000005

  43. Bowlin, N.O., Williams, J.D., Knoten, C.A., Torhan, M.C., Tashjian, T.F., Li, B., et al., Mutations in the Pseudomonas aeruginosa needle protein gene pscF confer resistance to phenoxyacetamide inhibitors of the type III secretion system, Antimicrob. Agents Chemother., 2014, vol. 58, no. 4, pp. 2211–2220. https://doi.org/10.1128/AAC.02795-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berube, B.J., Murphy, K.R., Torhan, M.C., Bowlin, N.O., Williams, J.D., Bowlin, T.L., et al., Impact of type III secretion effectors and of phenoxyacetamide inhibitors of type III secretion on abscess formation in a mouse model of Pseudomonas aeruginosa infection, Antimicrob. Agents Chemother., 2017, vol. 61, no. 11, p. e01 202-17. https://doi.org/10.1128/AAC.01202-17

    Article  Google Scholar 

  45. Zigangirova, N.A. and Gintsburg, A.L., Target-specific searching of antivirulent preparations for chronic infection treatment, Zh. Mikrobiol., Epidemiol. Immunobiol., 2011, vol. 4, pp. 107–115.

    Google Scholar 

  46. Zigangirova, N.A., Zayakin, E.S., Kapotina, L.N., Kost, E.A., Didenko, L.V., Davydova, D.Y., et al., Development of chlamydial type III secretion system inhibitors for suppression of acute and chronic forms of chlamydial infection, Acta Nat., 2012, vol. 4, no. 2, pp. 87–97.

  47. Sheremet, A.B., Zigangirova, N.A., Zayakin, E.S., Luyksaar, S.I., Kapotina, L.N., Nesterenko, L.N., et al., Small molecule inhibitor of type three secretion system belonging to a class 2,4-disubstituted-4H-[1, 3,4]-thiadiazine-5-ones improves survival and decreases bacterial loads in an airway Pseudomonas aeruginosa infection in mice, BioMed Res. Int., 2018. https://doi.org/10.1155/2018/5810767

  48. Koroleva, E.A., Kobets, N.V., Zayakin, E.S., Luyksaar, S.I., Shabalina, L.A., and Zigangirova, N.A., Small molecule inhibitor of type three secretion suppresses acute and chronic Chlamydia trachomatis infection in a novel urogenital Chlamydia model, BioMed Res. Int., 2015. https://doi.org/10.1155/2015/484853

  49. Zigangirova, N.A., Kost, E.A., Didenko, L.V., Kapotina, L.N., Zayakin, E.S., Luyksaar, S.I., et al., A small-molecule compound belonging to a class of 2,4-disubstituted 1,3,4-thiadiazine-5-ones inhibits intracellular growth and persistence of Chlamydiatrachomatis, J. Med. Microbiol., 2016, vol. 1, pp. 91–98. https://doi.org/10.1099/jmm.0.000189

    Article  CAS  Google Scholar 

  50. Nesterenko, L.N., Zigangirova, N.A., Zayakin, E.S., Luyksaar, S.I., Kobets, N.V., Balunets, D.V., et al., A small-molecule compound belonging to a class of 2,4-disubstituted 1,3,4-thiadiazine-5-ones suppresses Salmonella infection in vivo, J. Antibiot., 2016, vol. 6, p. 422. https://doi.org/10.1038/ja.2015.131

    Article  CAS  Google Scholar 

  51. DiGiandomenico, A., Keller, A.E., Gao, C., Rainey, G.J., Warrener, P., Camara, M.M., et al., A multifunctional bispecific antibody protects against Pseudomonas aeruginosa, Sci. Transl. Med., 2014, vol. 6, no. 262, p. 262ra155.

    Article  Google Scholar 

  52. Warrener, P., Varkey, R., Bonnell, J.C., DiGiandomenico, A., Camara, M., Cook, K., et al., A novel anti-PcrV antibody providing enhanced protection against Pseudomonas aeruginosa in multiple animal infection models, Antimicrob. Agents Chemother., 2014, vol. 58, no. 8, pp. 4384–4391.

    Article  Google Scholar 

  53. DiGiandomenico, A., Patel, A., Smith, T., Keller, A., Elliot, S.T., Wachter, L., et al., DNA-delivery of monospecific and bispecific monoclonal antibodies targeting Pseudomonas aeruginosa protect mice from lethal pneumonia, Proc. American Thoracic Society Int. Conference D24. Gram Negative Pneumonias: From Bench to Bedside, 2016, p. A7898.

  54. Ray, V.A., Hill, P.J., Stover, C.K., Roy, S., Sen, C.K., Yu, L., et al., Anti-Psl targeting of Pseudomonas aeruginosa biofilms for neutrophil-mediated disruption, Sci. Rep., 2017, vol. 7, no. 1, pp. 1–12. https://doi.org/10.1038/s41598-017-16215-6

    Article  CAS  Google Scholar 

  55. Lee, V.T., Pukatzki, S., Sato, H., Kikawada, E., Kazimirova, A.A., Huang, J., et al., Pseudolipasin A is a specific inhibitor for phospholipase A2 activity of Pseudomonas aeruginosa cytotoxin ExoU, Infect. Immun., 2007, vol. 75, pp. 1089–1098. https://doi.org/10.1128/IAI.01184-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim, D., Baek, J., Song, J., Byeon, H., Min, H., and Min, K.H., Identification of arylsulfonamides as ExoU inhibitors, Bioorg. Med. Chem. Lett., 2014, vol. 24, no. 16, pp. 3823–3825. https://doi.org/10.1016/j.bmcl.2014.06.064

    Article  CAS  PubMed  Google Scholar 

  57. Lam, H., Schwochert, J., Lao, Y., Lau, T., Lloyd, C., Luu, J., et al., Synthetic cyclic peptomers as type III secretion system inhibitors, Antimicrob. Agents Chemother., 2017, vol. 58, no. 7, pp. 3762–3767. https://doi.org/10.1128/AAC.00060-17

    Article  Google Scholar 

  58. Arnoldo, A., Curak, J., Kittanakom, S., Chevelev, I., Lee, V.T., Sahebol-Amri, M., et al., Identification of small molecule inhibitors of Pseudomonas aeruginosa exoenzyme S using a yeast phenotypic screen, PLoS Genet., 2008, vol. 4, no. 2, p. e1 000 005. https://doi.org/10.1371/journal.pgen.1000005

    Article  CAS  Google Scholar 

  59. Saleeb, M., Sundin, C., Aglar, Ö., Pinto, A.F., Ebrahimi, M., Forsberg, Å., et al., Structure-activity relationships for inhibitors of Pseudomonas aeruginosa exoenzyme S ADP-ribosyltransferase activity, Eur. J. Med. Chem., 2018, vol. 143, pp. 568–576. https://doi.org/10.1016/j.ejmech.2017.11.036

    Article  CAS  PubMed  Google Scholar 

  60. Zetterström, C.E., Hasselgren, J., Salin, O., Davis, R.A., Quinn, R.J., Sundin, C., et al., The resveratrol tetramer (–)-hopeaphenol inhibits type III secretion in the Gram-negative pathogens Yersinia pseudotuberculosis and Pseudomonas aeruginosa, PLoS One, 2013, vol. 8, no. 12, p. e81 969. https://doi.org/10.1371/journal.pone.0081969

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. B. Sheremet, L. N. Nesterenko or N. A. Zigangirova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

ADDITIONAL INFORMATION

Sheremet A.B., е-mail: anna-pimenova@mail.ru; https://orcid.org/0000-0002-5210-5010

Nesterenko L.N., е-mail: nesterenko.mila@gmail.com; https://orcid.org/0000-0002-8893-5702

Zigangirova N.A., е-mail: zigangirova@mail.ru; https://orcid.org/0000-0001-6719-9403

Corresponding author: Sheremet A. B., е-mail: anna-pimenova@mail.ru

To cite this article:

Sheremet A.B., Nesterenko L.N., Zigangirova N.A. “The Pseudomonas aeruginosa Type-Three Secretion System as a Target for Development of Antivirulence Drugs.” Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya (Molecular Genetics, Microbiology, and Virology), 2020, vol. 38, no. 1, pp. 3–14 (Russian). https://doi.org/10.17116/molgen2020380113

Additional information

Translated by A. Barkhash

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheremet, A.B., Nesterenko, L.N. & Zigangirova, N.A. The Type Three Secretion System of Pseudomonas aeruginosa as a Target for Development of Antivirulence Drugs. Mol. Genet. Microbiol. Virol. 35, 1–13 (2020). https://doi.org/10.3103/S0891416820010073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416820010073

Keywords:

Navigation