Skip to main content
Log in

Features of DNA Helicase Encoded by the uvrD Gene of Deinococcus radiodurans R1 in Escherichia coli K-12 Cells

  • EXPERIMENTAL WORKS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Reparative helicase II of Deinococcus radiodurans performs an unexpected critical function in repair of double-strand DNA breaks through the mechanism of extended synthesis-dependent strand annealing (ESDSA), while it is considered as an optional participant in the RecF pathway of recombinational repair in Escherichia coli. A fragment of genomic DNA of the radioresistant bacterium Deinococcus radiodurans with the uvrD gene encoding DNA helicase II, which is involved in excision repair of nucleotides, mismatch repair, and recombinational repair and replication, was cloned in the cells of the model object, Escherichia coli K-12. The pCR 2.1-uvrD+ plasmid restores resistance to ultraviolet light of mutant cells of Escherichia coliuvrD, helD, and rep defective in reparative helicase II, helicase IV, and replicative helicase Rep, respectively, almost to the level of wild-type AB1157 and uvrD+, and, to a lesser extent, the strain with a mutation in the recQ gene encoding the key helicase of recombinational repair RecQ. The protective effect is also noticeable when strains with the plasmid are irradiated with γ-rays. It is established that Deinococcus radiodurans UvrD helicase possesses broad possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Friedberg, E.C., Walker, G.C., and Siede, W., DNA Repair and Mutagenesis, Washington, DC: ASM Press, 1995.

    Google Scholar 

  2. Kuzminov, A., Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda, Microbiol. Mol. Biol. Rev., 1999, vol. 63, no. 4, pp. 751–813.

    Article  CAS  Google Scholar 

  3. Bentchikou, E., Servant, P., ve Coste, G., and Sommer, S., A major role of the Rec-FOR pathway in DNA double-strand-break repair through ESDSA in Deinococcus radiodurans, PLoS Genet., 2010, vol. 6, no. 1, p. e1 000 774.

    Article  Google Scholar 

  4. Slade, D., Lindner, A.B., Paul, G., and Radman, M., Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans, Cell, 2009, vol. 136, no. 6, pp. 1044–1055.

    Article  CAS  Google Scholar 

  5. Zahradka, K., Slade, D., Bailone, A., Sommer, S., Averbeck, D., Petranovic, M., et al., Reassembly of shattered chromosomes in Deinococcus radiodurans, Nature, 2006, vol. 443, no. 7111, pp. 569–573.

    Article  CAS  Google Scholar 

  6. Matson, S.W., Bean, D.W., and George, J.W., DNA helicases: enzymes with essential role in all aspects of DNA metabolism, BioEssays, 1994, vol. 16, no. 1, pp. 13–22.

    Article  CAS  Google Scholar 

  7. Lestini, R. and Michel, B., UvrD and UvrD252 Counteract RecQ, RecJ, and RecFOR in a rep mutant of Escherichia coli, J. Bacteriol., 2008, vol. 190, no. 17, pp. 5995–6001.

    Article  CAS  Google Scholar 

  8. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning. A Laboratory Manual, New York: Cold Spring Harbor Laboratory, 1982.

    Google Scholar 

  9. Hiramatsu, Y., Kato, R., Kawaguchi, S., and Kuramitsu, S., Cloning and characterization of the uvrD gene from an extremely thermophilic bacterium, Thermus thermophilus HB8, Gene, 1997, vol. 199, nos. 1–2, pp. 77–82.

    Article  CAS  Google Scholar 

  10. Modrich, P., Mechanisms in E. coli and human mismatch repair, Angew. Chem. Int. Ed. Engl., 2016, vol. 55, no. 30, pp. 8490–8501. https://doi.org/10.1002/anie.201601412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Newton, K.N., Courcelle, C.T., and Courcelle, J., UvrD participation in nucleotide excision repair is required for the recovery of DNA synthesis following UV-induced damage in Escherichia coli, J. Nucleic Acids, 2012, vol. 2012, p. 271 453. https://doi.org/10.1155/2012/271453

    Article  CAS  Google Scholar 

  12. Mendonca, V.M., Kaiser-Rogers, K., and Matson, S.W., Double helicase II (uvrD)-helicase IV (helD) deletion mutants are defective in the recombination pathways of Escherichia coli, J. Bacteriol., 1993, vol. 175, no. 15, pp. 4641–4651.

    Article  CAS  Google Scholar 

  13. Stelter, M., Acajjaoui, S., McSweeney, S., and Timmins, J., Structural and mechanistic insight into DNA unwinding by Deinococcus radiodurans UvrD, PLoS One, 2013, vol. 8, no. 10, p. e77 364.

    Article  Google Scholar 

  14. Singleton, M.R., Dillingham, M.S., and Wigley, D.B., Structure and mechanism of helicases and nucleic acid translocases, Annu. Rev. Biochem., 2007, vol. 76, pp. 23–50.

    Article  CAS  Google Scholar 

  15. Yang, W., Lessons learned from UvrD helicase: Mecha-nism for directional movement, Annu. Rev. Biophys., 2010, vol. 39, pp. 367–385.

    Article  CAS  Google Scholar 

  16. Mills, M., Harami, G.M., Seol, Y., Gyimesi, M., Martina, M., Zoltan, J., Kovacs, Z.J., Kovacs, M., and Neuman, K.C., RecQ helicase triggers a binding mode change in the SSB–DNA complex to efficiently initiate DNA unwinding, Nucleic Acids Res., 2017, vol. 45, no. 20, pp. 11 878–11 890. https://doi.org/10.1093/nar/gkx939

    Article  CAS  Google Scholar 

  17. Trun, N., Mutations in the E. coli Rep helicase increase the amount of DNA per cell, FEMS Microbiol. Lett., 2003, vol. 226, no. 1, pp. 187–193.

    Article  CAS  Google Scholar 

  18. Smirnov, G.B., Filkova, E.V., Skavronskaya, A.G., Saenko, A.S., and Sinzinis, B.I., Loss and restoration of viability of E. coli due to combinations of mutations affecting DNA polymerase I and repair activities, Mol. Gen. Genet., 1973, vol. 121, no. 2, pp. 139–150.

    Article  CAS  Google Scholar 

  19. Pavankumar, T.L., Exell, J.C., and Kowalczykowski, S.C., Direct fluorescent imaging of translocation and unwinding by individual DNA helicases, Methods Enzymol., 2016, vol. 581, pp. 1–32. https://doi.org/10.1016/bs.mie.2016.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harmon, F.G., Brockman, J.P., and Kowalczykowski, S.C., RecQ helicase stimulates both DNA catenation and changes in DNA topology by topoisomerase III, J. Biol. Chem., 2003, vol. 278, no. 43, pp. 42 668–42678.

    Article  Google Scholar 

  21. Bruand, C. and Ehrlich, S.D., UvrD-dependent replication of rolling-circle plasmids in Escherichia coli, Mol. Microbiol., 2000, vol. 35, no. 1, pp. 204–110.

    Article  CAS  Google Scholar 

  22. Kogoma, T., Recombination by replication, Cell, 1996, vol. 85, no. 5, pp. 625–627.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Verbenko.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Novikova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulevich, E.P., Kuznetsova, L.V., Kil, Y.V. et al. Features of DNA Helicase Encoded by the uvrD Gene of Deinococcus radiodurans R1 in Escherichia coli K-12 Cells. Mol. Genet. Microbiol. Virol. 35, 32–37 (2020). https://doi.org/10.3103/S0891416820010048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416820010048

Keywords:

Navigation