Skip to main content
Log in

Linearly Implicit and High-Order Energy-Conserving Schemes for Nonlinear Wave Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A key issue in developing efficient numerical schemes for nonlinear wave equations is the energy-conserving. Most existing schemes of the energy-conserving are fully implicit and the schemes require an extra iteration at each time step and considerable computational cost for a long time simulation, while the widely-used q-stage (implicit) Gauss scheme (method) only preserves polynomial Hamiltonians up to degree 2q. In this paper, we present a family of linearly implicit and high-order energy-conserving schemes for solving nonlinear wave equations. The construction of schemes is based on recently-developed scalar auxiliary variable technique with a combination of classical high-order Gauss methods and extrapolation approximation. We prove that the proposed schemes are unconditionally energy-conserved for a general nonlinear wave equation. Numerical results are given to show the energy-conserving and the effectiveness of schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akrivis, G., Li, B., Li, D.: Energy-decaying extrapolated RK-SAV methods for the Allen–Cahn and Cahn–Hilliard equations. SIAM J. Sci. Comput. 41, A3703–A3727 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avrami, M.: Kinetics of phase change: I general theory. J. Chem. Phys. 7(12), 1103–1112 (1939)

    Article  Google Scholar 

  3. Argyris, J., Haase, M., Heinrich, J.C.: Finite element approximation to two-dimensional sine-Gordon solitons. Comput. Methods Appl. Mech. Eng. 86, 1–26 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biswas, A.: Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 14, 3239–3249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bratsos, A.G.: The solution of the two-dimensional sine-Gordon equation using the method of lines. J. Comput. Appl. Math. 206, 251–277 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brugnano, L., Caccia, G.F., Iavernaro, F.: Energy conservation issues in the numerical solution of the semilinear wave equation. Appl. Math. Comput. 270, 842–870 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian boundary value methods (energy preserving discrete line integral methods). J. Numer. Anal. Ind. Appl. Math. 5, 17–37 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Brugnano, L., Montigano, J.I., Rández, L.: High-order energy-conserving line-integral methods for charged particle dynamics. J. Comput. Phys. 396, 209–227 (2019)

    Article  MathSciNet  Google Scholar 

  9. Brugnano, L., Zhang, C., Li, D.: A class of energy-conserving Hamiltonian boundary value methods for nonlinear Schrödinger equation with wave operator. Commun. Nonlinear Sci. Simul. 60, 33–49 (2018)

    Article  MathSciNet  Google Scholar 

  10. Brenner, P., van Wahl, W.: Global classical solutions of nonlinear wave equations. Math. Z. 176, 87–121 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cai, W., Jiang, C., Wang, Y., Song, Y.: Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions. J. Comput. Phys. 395, 166–185 (2019)

    Article  MathSciNet  Google Scholar 

  12. Cai, J., Shen, J.: Two classes of linearly implicit local energy-preserving approach for general multi-symplectic Hamiltonian PDEs. J. Comput. Phys. 401, 108975 (2020)

    Article  MathSciNet  Google Scholar 

  13. Cao, W., Li, D., Zhang, Z.: Optimal superconvergence of energy conserving local discontinuous Galerkin methods for wave equations. Commun. Comput. Phys. 21, 211–236 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Celledoni, E., McLachlan, R.I., McLaren, D.I., Owren, B., Quispel, G.R.W., Wright, W.M.: Energy-preserving Runge–Kutta methods. ESAIM: Math. Model. Numer. Anal. 43, 645–649 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Celledoni, E., Owren, B., Sun, Y.: The minimal stage, energy preserving Runge–Kutta method for polynomial Hamiltonian systems is the averaged vector field method. Math. Comput. 83, 1689–1700 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cheng, Q., Shen, J., Yang, X.: Highly efficient and accurate numerical schemes for the epitaxial thin film growth models by using the SAV Approach. J. Sci. Comput. 78, 1467–1487 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Christiansen, P.L., Lomdahl, P.S.: Numerical solutions of 2 + 1 dimensional sine-Gordon solitons. Phys. D 2, 482–494 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dodd, R.K., Eilbeck, I.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1982)

    MATH  Google Scholar 

  19. Drazin, P.J., Johnson, R.S.: Solitons: An Introduction. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  20. Duncan, D.B.: Symplectic finite difference approximations of the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 34, 1742–1760 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  22. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordineary Differential Equations II, Stiff and Differential-Algebraic Problems. Springer, Berlin (2006)

    Google Scholar 

  23. Jiang, C., Cai, W., Wang, Y.: A linearly implicit and local energy-preserving scheme for the Sine-Gordon equation based on the invariant energy quadratization approach. J. Sci. Comput. 80, 1629–1655 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jimenez, S., Vazquez, L.: Analysis of four numerical schemes for a nonlinear Klein–Gordon equation. Appl. Math. Comput. 35, 61–94 (1990)

    MathSciNet  MATH  Google Scholar 

  25. Johnson, W., Mehl, R.: Reaction kinetics in processes of nucleation and growth. Trans. AIME 135, 416–442 (1939)

    Google Scholar 

  26. Li, Z., Tang, Y., Lei, H., Caswell, B., Karniadakis, G.E.: Energy-conserving dissipative particle dynamics with temperature-dependent properties. J. Comput. Phys. 265, 113–127 (2014)

    Article  MATH  Google Scholar 

  27. Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, J., Zhao, J., Wang, Q.: Energy and entropy preserving numerical approximations of thermodynamically consistent crystal growth models. J. Comput. Phys. 382, 202–220 (2019)

    Article  MathSciNet  Google Scholar 

  29. Lubich, C., Ostermann, A.: Runge–Kutta approximation of quasi-linear parabolic equations. Math. Comput. 64, 601–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. McLachlan, R.I., Quispel, G.R., Robidoux, N.: Geometric integration using discrete gradient. Philos. Trans. R. Soc. Lond. Ser. A 357, 1021–1045 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. McLachlan, R.I., Quispel, G.R.: Discrete gradient methods have an energy conservation law. Discrete Contin. Dyn. Syst. 34, 1099–1104 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ostermann, A., Roche, M.: Runge-Kutta methods for partial differential equations and fractional Orders of Convergence. Math. Comput. 59, 403–420 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ostermann, A., Thalhammer, M.: Convergence of Runge–Kutta methods for nonlinear parabolic equations. Appl. Numer. Math. 42, 367–380 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pascual, P.J., Jiménez, S., Vázquez, L.: Numerical simulations of a nonlinear Klein–Gordon model. In: Applications. Computational Physics, Granada, 1994, Lecture Notes in Physics, vol. 448, Springer, Berlin, 1995, pp. 211–270

  35. Quispel, G.R., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A 41, 045206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sanz-Serna, J.M., Verwer, J.G., Hundsdorfer, W.H.: Convergence and order reduction of Runge–Kutta schemes applied to evolutionary problems in partial differential equations. Numer. Math. 50, 405–418 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56, 2895–2912 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Song, F., Karniadakis, G.E.: Fractional magneto-hydrodynamics: algorithms and applications. J. Comput. Phys. 378, 44–62 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Strauss, W.A., Váquez, L.: Numerical solution of a nonlinear Klein–Gordon equation. J. Comput. Phys. 28, 271–278 (1978)

    Article  MathSciNet  Google Scholar 

  42. Wang, B., Wu, X.: The formulation and analysis of energy-preserving schemes for solving high-dimensional nonlinear Klein–Gordon equations. IMA J. Numer. Anal. 39, 2016–2044 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, L., Chen, W., Wang, C.: An energy-conserving second order numerical scheme for nonlinear hyperbolic equation with an exponential nonlinear term. J. Comput. Appl. Math. 280, 347–366 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wazwaz, A.M.: New travelling wave solutions to the Boussinesq and the Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 13, 889–901 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu, X., Liu, K., Shi, W.: Structure-Preserving Algorithms for Oscillatory Differential Equations II. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  46. Wu, X., Wang, B., Shi, W.: Efficient energy preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235, 587–605 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, C., Wang, H., Huang, J., Wang, C., Yue, X.: A second order operator splitting numerical scheme for the “good” Boussinesq equation. Appl. Numer. Math. 119, 179–193 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhou, B., Li, D.: Newton linearized methods for semilinear parabolic equations. Numer. Math. Theor. Meth. Appl. 13(4), 928–945 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported in part by the National Natural Science Foundation of China (NSFC) under Grant Nos. 11771162, 11971010 and a Grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project CityU 11302519).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Sun, W. Linearly Implicit and High-Order Energy-Conserving Schemes for Nonlinear Wave Equations. J Sci Comput 83, 65 (2020). https://doi.org/10.1007/s10915-020-01245-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01245-6

Keywords

Navigation