Skip to main content
Log in

Preparation and cellular-interaction investigation of 177Lu/FITC labeled NGR peptides

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Aminopeptidase N (CD13) as the malignant cell surface marker is overexpressed on many tumor cells including lung cancer and the neovascular cell membranes. A tripeptide structure, Asn-Gly-Arg (NGR), can specifically bind to CD13. In this study, we successfully labeled various NGR peptides derivatives with FITC or 177Lu at high efficiency. The 177Lu labeling of the NGR peptides was stable in vitro. The cellular uptake of the 177Lu-labeled cyclic NGR peptides was different by varying the structure of peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    Article  CAS  Google Scholar 

  2. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–31

    Article  CAS  Google Scholar 

  3. Hammes HP, Brownlee M, Jonczyk A, Sutter A, Preissner KT (1996) Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nat Med 2(5):529–533

    Article  CAS  Google Scholar 

  4. Guzman-Rojas L, Rangel R, Salameh A, Edwards JK, Dondossola E, Kim YG, Saghatelian A, Giordano RJ, Kolonin MG, Staquicini FI, Koivunen E, Sidman RL, Arap W, Pasqualini R (2012) Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment. Proc Natl Acad Sci USA 109(5):1637–1642

    Article  CAS  Google Scholar 

  5. Kessler T, Baumeier A, Brand C, Grau M, Angenendt L, Harrach S, Stalmann U, Schmidt LH, Gosheger G, Hardes J, Andreou D, Dreischaluck J, Lenz G, Wardelmann E, Mesters RM, Schwoppe C, Berdel WE, Hartmann W, Schliemann C (2018) Aminopeptidase N (CD13): expression, prognostic Impact, and use as therapeutic target for tissue factor induced tumor vascular infarction in soft tissue sarcoma. Transl Oncol 11(6):1271–1282

    Article  Google Scholar 

  6. Wickstrom M, Larsson R, Nygren P, Gullbo J (2011) Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Sci 102(3):501–508

    Article  Google Scholar 

  7. Ikeda N, Nakajima Y, Tokuhara T, Hattori N, Sho M, Kanehiro H, Miyake M (2003) Clinical significance of aminopeptidase N/CD13 expression in human pancreatic carcinoma. Clin Cancer Res 9(4):1503–1508

    CAS  PubMed  Google Scholar 

  8. Pang L, Zhang N, Xia Y, Wang D, Wang G, Meng X (2016) Serum APN/CD13 as a novel diagnostic and prognostic biomarker of pancreatic cancer. Oncotarget 7(47):77854–77864

    Article  Google Scholar 

  9. Bieker R, Kessler T, Schwoppe C, Padro T, Persigehl T, Bremer C, Dreischaluck J, Kolkmeyer A, Heindel W, Mesters RM, Berdel WE (2009) Infarction of tumor vessels by NGR-peptide-directed targeting of tissue factor: experimental results and first-in-man experience. Blood 113(20):5019–5027

    Article  CAS  Google Scholar 

  10. Meng Y, Zhang Z, Liu K, Ye L, Liang Y, Gu W (2018) Aminopeptidase N (CD13) targeted MR and NIRF dual-modal imaging of ovarian tumor xenograft. Mater Sci Eng C Mater Biol Appl 93:968–974

    Article  CAS  Google Scholar 

  11. Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279(5349):377–380

    Article  CAS  Google Scholar 

  12. Schmidt LH, Brand C, Stucke-Ring J, Schliemann C, Kessler T, Harrach S, Mohr M, Gorlich D, Marra A, Hillejan L, Muller-Tidow C, Lenz G, Wardelmann E, Wiewrodt R, Berdel WE, Schwoppe C, Hartmann W (2017) Potential therapeutic impact of CD13 expression in non-small cell lung cancer. PLoS ONE 12(6):e0177146

    Article  Google Scholar 

  13. Schmidt LH, Stucke-Ring J, Brand C, Schliemann C, Harrach S, Muley T, Herpel E, Kessler T, Mohr M, Gorlich D, Kreuter M, Lenz G, Wardelmann E, Thomas M, Berdel WE, Schwoppe C, Hartmann W (2017) CD13 as target for tissue factor induced tumor vascular infarction in small cell lung cancer. Lung Cancer 113:121–127

    Article  Google Scholar 

  14. Brand C, Frohlich M, Ring J, Schliemann C, Kessler T, Mantke V, Konig S, Lucke M, Mesters RM, Berdel WE, Schwoppe C (2015) Tumor growth inhibition via occlusion of tumor vasculature induced by N-terminally PEGylated retargeted tissue factor tTF-NGR. Mol Pharm 12(10):3749–3758

    Article  CAS  Google Scholar 

  15. Colombo G, Curnis F, De Mori GM, Gasparri A, Longoni C, Sacchi A, Longhi R, Corti A (2002) Structure-activity relationships of linear and cyclic peptides containing the NGR tumor-homing motif. J Biol Chem 277(49):47891–47897

    Article  CAS  Google Scholar 

  16. Persigehl T, Ring J, Bremer C, Heindel W, Holtmeier R, Stypmann J, Claesener M, Hermann S, Schafers M, Zerbst C, Schliemann C, Mesters RM, Berdel WE, Schwoppe C (2014) Non-invasive monitoring of tumor-vessel infarction by retargeted truncated tissue factor tTF-NGR using multi-modal imaging. Angiogenesis 17(1):235–246

    Article  CAS  Google Scholar 

  17. Vats K, Satpati D, Sharma R, Kumar C, Sarma HD, Dash A (2017) (99 m) Tc-labeled NGR-chlorambucil conjugate, (99 m) Tc-HYNIC-CLB-c(NGR) for targeted chemotherapy and molecular imaging. J Labelled Comp Radiopharm 60(9):431–438

    Article  CAS  Google Scholar 

  18. Vats K, Satpati D, Sharma R, Sarma HD, Banerjee S (2017) Synthesis and comparative in vivo evaluation of (99 m) Tc(CO)3 -labeled PEGylated and non-PEGylated cRGDfK peptide monomers. Chem Biol Drug Des 89(3):371–378

    Article  CAS  Google Scholar 

  19. Shao Y, Liang W, Kang F, Yang W, Ma X, Li G, Zong S, Chen K, Wang J (2014) 68 Ga-labeled cyclic NGR peptide for microPET imaging of CD13 receptor expression. Molecules 19(8):11600–11612

    Article  CAS  Google Scholar 

  20. Li G, Wang X, Zong S, Wang J, Conti PS, Chen K (2014) MicroPET imaging of CD13 expression using a (64)Cu-labeled dimeric NGR peptide based on sarcophagine cage. Mol Pharm 11(11):3938–3946

    Article  CAS  Google Scholar 

  21. Satpati D, Sharma R, Kumar C, Sarma HD, Dash A (2017) (68)Ga-Chelation and comparative evaluation of N,N′-bis-[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N′-diacetic acid (HBED-CC) conjugated NGR and RGD peptides as tumor targeted molecular imaging probes. Medchemcomm 8(3):673–679

    Article  CAS  Google Scholar 

  22. Satpati D, Sharma R, Sarma HD, Dash A (2018) Comparative evaluation of (68) Ga-labeled NODAGA, DOTAGA, and HBED-CC-conjugated cNGR peptide chelates as tumor-targeted molecular imaging probes. Chem Biol Drug Des 91(3):781–788

    Article  CAS  Google Scholar 

  23. Chen K, Ma W, Li G, Wang J, Yang W, Yap LP, Hughes LD, Park R, Conti PS (2013) Synthesis and evaluation of 64Cu-labeled monomeric and dimeric NGR peptides for MicroPET imaging of CD13 receptor expression. Mol Pharm 10(1):417–427

    Article  CAS  Google Scholar 

  24. Zhuo L, Yang X, Liao W, Wang J, Wang H, Lv M, Wang G, Song H, Feng Y, Chen Y, Wei H, Yang Y, Zhao P (2019) Comparative cell uptake study of FITC-/177Lu-labeled RM26 monomer, dimer and trimer on PC-3: improving binding affinity of gastrin releasing peptide receptor (GRPR) antagonist via bivalency/trivalency. J Radioanal Nucl Chem 319(3):881–889

    Article  CAS  Google Scholar 

  25. Vats K, Satpati AK, Sharma R, Sarma HD, Satpati D, Dash A (2018) (177)Lu-labeled cyclic Asn-Gly-Arg peptide tagged carbon nanospheres as tumor targeting radio-nanoprobes. J Pharm Biomed Anal 152:173–178

    Article  CAS  Google Scholar 

  26. Curnis F, Cattaneo A, Longhi R, Sacchi A, Gasparri AM, Pastorino F, Di Matteo P, Traversari C, Bachi A, Ponzoni M, Rizzardi GP, Corti A (2010) Critical role of flanking residues in NGR-to-isoDGR transition and CD13/integrin receptor switching. J Biol Chem 285(12):9114–9123

    Article  CAS  Google Scholar 

  27. Huang Y, Wang X, Huang W, Cheng Q, Zheng S, Guo S, Cao H, Liang XJ, Du Q, Liang Z (2015) Systemic administration of siRNA via cRGD-containing peptide. Sci Rep 5:12458

    Article  CAS  Google Scholar 

  28. Achbergerova E, Smejkalova D, Huerta-Angeles G, Soucek K, Hermannova M, Vagnerova H, Vicha R, Velebny V (2018) In vivo monitoring of tumor distribution of hyaluronan polymeric micelles labeled or loaded with near-infrared fluorescence dye. Carbohydr Polym 198:339–347

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded from the National Key R&D Program of China (2017YFC1200403), the National Natural Science Foundation of China (Grant Nos. 21976167 and 21906155), and Nuclear Energy Development Project of State Administration of Science, Technology and Industry for National Defense (20181524-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyuan Wei, Xia Yang or Yue Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5595 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., Fu, H., Li, X. et al. Preparation and cellular-interaction investigation of 177Lu/FITC labeled NGR peptides. J Radioanal Nucl Chem 325, 67–74 (2020). https://doi.org/10.1007/s10967-020-07223-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07223-4

Keywords

Navigation