Skip to main content
Log in

Analytical modeling of a high-K underlap dielectric- and charge-modulated silicon-on-nothing FET-based biosensor

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Field-effect transistor (FET)-based biosensors with stacked gate oxides provide low leakage current and high sensitivity. However, an undesirable interfacial layer of silicate and silicon dioxide is formed in between the stacked oxides. In this paper, an underlap silicon-on-nothing FET-based biosensor with high-K gate oxide is presented for the detection of charged biomolecules, thereby removing the unwanted interfacial layer while preserving the sensitivity of the device. The study is based on a surface potential model for the proposed device, which is developed from Poisson’s equation by incorporating the dielectric and charge properties of the biomolecules. A threshold voltage model is then developed to examine the sensitivity of the device. The change in the device characteristics upon the accumulation of biomolecules is investigated to understand the impact of the biomolecules on the behavior and sensitivity of the device. The results show that the proposed device is highly sensitive to charged biomolecules, and that the charge of the biomolecules is more important than their dielectric properties for modulating the device characteristics. The results indicate that the proposed device has potential to be chosen as a new type of highly sensitive, nanosize, label-free biosensor with no unwanted interfacial layer. The analytical model is validated against two-dimensional (2-D) numerical simulation data obtained from ATLAS (SILVACO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bergveld, P.: The development and application of FET-based biosensors. Biosensors 2(1), 15–33 (1986)

    Article  Google Scholar 

  2. Rahman, E., Shadman, A., Ahmed, I., Khan, S.U.Z., Khosru, Q.D.M.: A physically based compact I–V model for monolayer TMDC channel MOSFET and DMFET biosensor. Nanotechnology 29(23), 235203 (2018)

    Article  Google Scholar 

  3. Dwivedi, P., Kranti, A.: Dielectric modulated biosensor architecture: tunneling or accumulation based transistor? IEEE Sens. J. 18(8), 3228–3235 (2018)

    Article  Google Scholar 

  4. Chandan, B.V., Nigam, K., Sharma, D.: Junctionless based dielectric modulated electrically doped tunnel FET based biosensor for label-free detection. Micro Nano Lett. 13(4), 452–456 (2018)

    Article  Google Scholar 

  5. Im, H., Huang, X.-J., Gu, B., Choi, Y.-K.: A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2(7), 430–434 (2007)

    Article  Google Scholar 

  6. Gu, B., Park, T.J., Ahn, J.-H., Huang, X.-J., Lee, S.Y., Choi, Y.-K.: Nanogap field-effect transistor biosensors for electrical detection of avian influenza. Small 5(21), 2407–2412 (2009)

    Article  Google Scholar 

  7. Lee, K.-W., Choi, S.-J., Ahn, J.-H., Moon, D.-I., Park, T.J., Lee, S.Y., Choi, Y.-K.: An underlap field-effect transistor for electrical detection of influenza. Appl. Phys. Lett. 96(3), 033703 (2010)

    Article  Google Scholar 

  8. Choi, J.-M., Han, J.-W., Choi, S.-J., Choi, Y.-K.: Analytical modeling of a nanogap-embedded FET for application as a biosensor. IEEE Trans. Electron Devices 57(12), 3477–3484 (2010)

    Article  Google Scholar 

  9. Pratap, Y., Kumar, M., Kabra, S., Haldar, S., Gupta, R.S., Gupta, M.: Analytical modeling of gate-all-around junctionless transistor based biosensors for detection of neutral biomolecule species. J. Comput. Electron. 17(1), 288–296 (2018)

    Article  Google Scholar 

  10. Chakraborty, A., Sarkar, A.: Analytical modeling and sensitivity analysis of dielectric-modulated junctionless gate stack surrounding gate MOSFET (JLGSSRG) for application as biosensor. J. Comput. Electron. 16(3), 556–567 (2017)

    Article  Google Scholar 

  11. Chaudhry, A.: NanoScale effects: gate oxide leakage currents. In: Fundamentals of Nanoscaled Field Effect Transistors, pp. 25–36. Springer, New York (2013)

  12. Basak, R., Maiti, B., Mallik, A.: Effect of the presence of trap states in oxides in modeling gate leakage current in advanced MOSFET with multi-oxide stack. Superlattices Microstruct. 129, 193–201 (2019)

    Article  Google Scholar 

  13. Thriveni, G., Ghosh, K.: Performance analysis of nanoscale double gate strained silicon MOSFET with high k dielectric layers. Mater. Res. Express 6(8), 085062 (2019)

    Article  Google Scholar 

  14. Zhang, J., Yuan, J.S., Ma, Y.: Modeling short channel effect on high-K and stacked-gate MOSFETs. Solid State Electron. 44(11), 2089–2091 (2000)

    Article  Google Scholar 

  15. Liu, C., Xu, J., Liu, L., Lu, H., Huang, Y.: A threshold-voltage model for small-scaled GaAs nMOSFET with stacked high-K gate dielectric. J. Semicond. 37(2), 024004 (2016)

    Article  Google Scholar 

  16. Wei-Yuan, L., Taur, Y.: On the scaling limit of ultrathin SOI MOSFETs. IEEE Trans. Electron Devices 53(5), 1137–1141 (2006)

    Article  Google Scholar 

  17. Kumar, M.J., Chaudhry, A.: Two-dimensional analytical modeling of fully depleted DMG SOI MOSFET and evidence for diminished SCEs. IEEE Trans. Electron Devices 51(4), 569–574 (2004)

    Article  Google Scholar 

  18. Tiwari, P.K., Dubey, S., Singh, M., Jit, S.: A two-dimensional analytical model for threshold voltage of short-channel triple-material double-gate metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 108(7), 074508 (2010)

    Article  Google Scholar 

  19. Khuraijam Nelson, S., Dutta, P.K.: Comparative analysis of underlapped silicon on insulator and underlapped silicon on nothing dielectric and charge modulated FET based biosensors. In: 2019 Devices for Integrated Circuit (DevIC). Presented at the 2019 Devices for Integrated Circuit (DevIC), pp. 231–235. IEEE, Kalyani (2019)

  20. Jurczak, M., Skotnicki, T., Paoli, M., Tormen, B., Martins, J., Regolini, J.L., Dutartre, D., Ribot, P., Lenoble, D., Pantel, R., Monfray, S.: Silicon-on-Nothing (SON)-an innovative process for advanced CMOS. IEEE Trans. Electron Devices 47(11), 2179–2187 (2000)

    Article  Google Scholar 

  21. Pretet, J., Monfray, S., Cristoloveanu, S., Skotnicki, T.: Silicon-on-Nothing MOSFETs: performance, short-channel effects, and backgate coupling. IEEE Trans. Electron Devices 51(2), 240–245 (2004)

    Article  Google Scholar 

  22. Chaudhry, A., Kumar, M.J.: Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review. IEEE Trans. Device Mater. Reliab. 4(1), 99–109 (2004)

    Article  Google Scholar 

  23. Trivedi, V.P., Fossum, J.G.: Nanoscale FD/SOI CMOS: thick or thin BOX? IEEE Electron Device Lett. 26(1), 26–28 (2005)

    Article  Google Scholar 

  24. Dutta, P.K., Manna, B., Sarkar, S.K.: Analytical modeling of linearly graded alloy material gate recessed ultra thin body source/drain SON MOSFET. Superlattices Microstruct. 77, 64–75 (2015)

    Article  Google Scholar 

  25. Banerjee, P., Sarkar, S.K.: 3-D analytical modeling of dual-material triple-gate silicon-on-nothing MOSFET. IEEE Trans. Electron Devices 64(2), 368–375 (2017)

    Article  Google Scholar 

  26. Pan, C.H., Kwo, J., Lee, K.Y., Lee, W.C., Chu, L.K., Huang, M.L., Lee, Y.J., Hong, M.: Si metal-oxide-semiconductor devices with high K HfO2 fabricated using a novel MBE template approach followed by atomic layer deposition. J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 26(3), 1178–1181 (2008)

    Article  Google Scholar 

  27. Young, K.K.: Short-channel effect in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 36(2), 399–402 (1989)

    Article  Google Scholar 

  28. Singh, S., Raj, B., Vishvakarma, S.K.: Analytical modeling of split-gate junction-less transistor for a biosensor application. Sens. Bio-Sens. Res. 18, 31–36 (2018)

    Article  Google Scholar 

  29. Goel, E., Kumar, S., Singh, K., Singh, B., Kumar, M., Jit, S.: 2-D analytical modeling of threshold voltage for graded-channel dual-material double-gate MOSFETs. IEEE Trans. Electron Devices 63(3), 966–973 (2016)

    Article  Google Scholar 

  30. Mohapatra, N.R., Desai, M.P., Narendra, S.G., Rao, V.R.: The effect of high-k gate dielectrics on deep submicrometer CMOS device and circuit performance. IEEE Trans. Electron Devices 49(5), 826–831 (2002)

    Article  Google Scholar 

  31. ATLAS User’s Manual: SILVACO Int., Santa Clara (2015)

  32. Ahn, J.-H., Choi, S.-J., Im, M., Kim, S., Kim, C.-H., Kim, J.-Y., Park, T.J., Lee, S.Y., Choi, Y.-K.: Charge and dielectric effects of biomolecules on electrical characteristics of nanowire FET biosensors. Appl. Phys. Lett. 111(11), 113701 (2017)

    Article  Google Scholar 

  33. Cuervo, A., Dans, P.D., Carrascosa, J.L., Orozco, M., Gomila, G., Fumagalli, L.: Direct measurement of the dielectric polarization properties of DNA. Proc. Natl. Acad. Sci. 111(35), E3624–E3630 (2014)

    Article  Google Scholar 

  34. Narang, R., Saxena, M., Gupta, R.S., Gupta, M.: Dielectric modulated tunnel field-effect transistor: a biomolecule sensor. IEEE Electron Device Lett. 33(2), 266–268 (2012)

    Article  Google Scholar 

  35. Ajay Narang, R., Saxena, M., Gupta, M.: Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as a biosensors. Superlattices Microstruct. 85, 557–572 (2015)

    Article  Google Scholar 

  36. Buvaneswari, B., Balamurugan, N.B.: 2D analytical modeling and simulation of dual material DG MOSFET for biosensing application. AEU Int. J. Electron. Commun. 99, 193–200 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khuraijam Nelson Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K.N., Dutta, P.K. Analytical modeling of a high-K underlap dielectric- and charge-modulated silicon-on-nothing FET-based biosensor. J Comput Electron 19, 1126–1135 (2020). https://doi.org/10.1007/s10825-020-01511-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01511-8

Keywords

Navigation