Skip to main content
Log in

Chlorella vulgaris biomass production using brewery wastewater with high chemical oxygen demand

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The aim of the work was to use an effluent with high chemical oxygen demand (COD) from small brewery as substrate for the production of Chlorella vulgaris biomass. A non-axenic strain from a Patagonian river was employed, and the effects of COD and pH value on the microalga growth were studied through a central composite design. A medium with COD 18300 mg O2 mL−1 and initial pH: 6.5 optimized microalga growth. With the optimal condition, C. vulgaris adapted rapidly to medium and stationary phase was attained at 75 h. Moreover, lack of illumination did not affect μmax, neither final biomass concentration, while supplementation with BG11 enhanced the biomass productivity at 0.47 ± 0.07 g L−1 h−1, and pigment contents at least four times respect to the heterotrophic mode. For the first time, a brewery wastewater with high COD could be successfully used as substrate for C. vulgaris production, without presenting inhibitions, which represents a significant advance contributing toward more sustainable promising perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G (2012) Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol 118:61–66

  • Anthony J, Sivashankarasubbiah KT, Thonthula S, Rangamaran VR, Gopal D, Ramalingam K (2018) An efficient method for the sequential production of lipid and carotenoids from the Chlorella growth factor-extracted biomass of Chlorella vulgaris. J Appl Phycol 30:2325–2335

    Article  CAS  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater. 20th Edn. American Public Health Association

  • Civitaresi HM, Niembro AA, Dondo Bühler MB (2017) Desafíos para desarrollar una agroindustria local. Hacia una tipología de productores de cerveza artesanal en Bariloche Revista Pymes, Innovación y Desarrollo 5:41–62

  • El-Sheekh MM, Bedaiwy MY, Osman ME, Ismail MM (2014) Influence of molasses on growth, biochemical composition and ethanol production of the green algae Chlorella vulgaris and Scenedesmus obliquus. J Agric Eng Biotechnol 2:20–28

    Google Scholar 

  • Ende SSW, Noke A (2019) Heterotrophic microalgae production on food waste and by-products. J Appl Phycol 31:1565–1571

    Article  Google Scholar 

  • Farooq W, Lee Y-C, Ryu B-G, Kim B-H, Kim H-S, Choi Y-E, Yang J-W (2013) Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour Technol 132:230–238

    Article  CAS  Google Scholar 

  • Gami B, Patel JP, Kothari IL (2014) Cultivation of Chlorella protothecoides (ISIBES - 101) under autotrophic and heterotrophic conditions for biofuel production. J Algal Biomass Util 5:20–29

    Google Scholar 

  • Ge S, Champagne P (2016) Nutrient removal, microalgal biomass growth, harvesting and lipid yield in response to centrate wastewater loadings. Water Res 88:604–612

    Article  CAS  Google Scholar 

  • Gentili FG (2014) Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases. Bioresour Technol 169:27–32

    Article  CAS  Google Scholar 

  • Gupta S, Pandey RA, Pawar SB (2017) Bioremediation of synthetic high–chemical oxygen demand wastewater using microalgal species Chlorella pyrenoidosa. Biorem J 21:38–51

    Article  CAS  Google Scholar 

  • He PJ, Mao B, Shen CM, Shao LM, Lee DJ, Chang JS (2013) Cultivation of Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel production. Bioresour Technol 129:177–181

    Article  CAS  Google Scholar 

  • He Y, Dong J, Yin H, Zhao Y, Chen R, Wan X, Chen P, Hou X, Liu J, Chen L (2014) Wort composition and its impact on the flavour-active higher alcohol and ester formation of beer – a review. J Inst Brew 120:157–163

    Article  CAS  Google Scholar 

  • Hong Y, Xu K, Zhan J (2014) Growth relationships of a lipid-producing Chlorella-alga with common microalgae in laboratory co-cultures. Microbiology 83:366–375

    Article  CAS  Google Scholar 

  • Kang R, Wang J, Shi D, Cong W, Cai Z, Ouyang F (2004) Interactions between organic and inorganic carbon sources during mixotrophic cultivation of Synechococcus sp. Biotechnol Lett 26:1429–1432

    Article  CAS  Google Scholar 

  • Kong W, Yang S, Wang H, Huo H, Guo B, Liu N, Zhang A, Niu S (2020) Regulation of biomass, pigments, and lipid production by Chlorella vulgaris 31 through controlling trophic modes and carbon sources. J Appl Phycol. https://doi.org/10.1007/s10811-020-02089-1

  • Kuo C-M, Chen T-Y, Lin T-H, Kao C-Y, Lai J-T, Chang J-S, Lin C-S (2015) Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production. Bioresour Technol 194:326–333

    Article  CAS  Google Scholar 

  • Liu J, Sun Z, Zhong Y, Gerken H, Huang J, Chen F (2013) Utilization of cane molasses towards cost-saving astaxanthin production by a Chlorella zofingiensis mutant. J Appl Phycol 25:1447–1456

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Marchão L, da Silva TL, Gouveia L, Reis A (2018) Microalgae-mediated brewery wastewater treatment: effect of dilution rate on nutrient removal rates, biomass biochemical composition, and cell physiology. J Appl Phycol 30:1583–1595

    Article  Google Scholar 

  • Mata TM, Melo AC, Simões M, Caetano NS (2012) Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresour Technol 107:151–158

    Article  CAS  Google Scholar 

  • Mennaa FZ, Arbib Z, Perales JA (2015) Urban wastewater treatment by seven species of microalgae and an algal bloom: biomass production N and P removal kinetics and harvestability. Water Res 83:42–51

    Article  CAS  Google Scholar 

  • Ministerio de Agroindustria (2017) Proyecto de asistencia integral para el agregado de valor en agroalimentos (PROCAL). http://www.alimentosargentinos.gob.ar/HomeAlimentos/ProcalIII/proyectospilotos/2017/resultado/9.pdf (accessed 5.6.20)

  • Mishra SK, Suh WI, Farooq W, Moon M, Shrivastav A, Park MS, Yang J-W (2014) Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour Technol 155:330–333

    Article  CAS  Google Scholar 

  • Montgomery DC (2008) Diseño y análisis de experimentos, 2nd edn. Limusa Wiley, Arizona State University

    Google Scholar 

  • Nieto Calvache J, Cueto M, Farroni A, de Escalada Pla M, Gerschenson LN (2016) Antioxidant characterization of new dietary fiber concentrates from papaya pulp and peel (Carica papaya L.). J Funct Foods 27:319–328

    Article  CAS  Google Scholar 

  • Nwoba EG, Mickan BS, Moheimani NR (2019) Chlorella sp. growth under batch and fed-batch conditions with effluent recycling when treating the effluent of food waste anaerobic digestate. J Appl Phycol 31:3545–3556

    Article  CAS  Google Scholar 

  • Ördög V, Stirk WA, Bálint P, van Staden J, Lovász C (2012) Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. J Appl Phycol 24:907–914

    Article  Google Scholar 

  • Raposo MF d J, Oliveira SE, Castro PM, Bandarra NM, Morais RM (2010) On the utilization of microalgae for brewery effluent treatment and possible applications of the produced biomass. J Inst Brew 116:285–292

    Article  CAS  Google Scholar 

  • Rearte TA, Vélez CG, Beligni MV, Figueroa FL, Gómez PI, Flaig D, de Iorio AF (2018) Biological characterization of a strain of Golenkinia (Chlorophyceae) with high oil and carotenoid content induced by increased salinity. Algal Res 33:218–230

    Article  Google Scholar 

  • Safi C, Zebib B, Merah O, Pontalier P-Y, Vaca-Garcia C (2014) Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew Sust Energ Rev 35:265–278

    Article  Google Scholar 

  • Seluy LG, Isla MA (2014) A process to treat high-strength brewery wastewater via ethanol recovery and vinasse fermentation. Ind Eng Chem Res 53:17043–17050

    Article  CAS  Google Scholar 

  • Song M, Pei H, Hu W, Ma G (2013) Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresour Technol 141:245–251

    Article  CAS  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

    Article  CAS  Google Scholar 

  • Travieso L, Benítez F, Sánchez E, Borja R, León M, Raposo F, Rincón B (2008) Assessment of a microalgae pond for post-treatment of the effluent from an anaerobic fixed bed reactor treating distillery wastewater. Environ Technol 29:985–992

    Article  CAS  Google Scholar 

  • Veloso V, Reis A, Gouveia L, Novais J (1991) Lipid production by Phaeodactylum tricornutum. Bioresour Technol 38:115–119

    Article  CAS  Google Scholar 

  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–1186

    Article  CAS  Google Scholar 

  • Wang Z, Yao X, Miao M, Chen Q, Kong Q, Shang D, Yu J, Fu X (2016) Effects of urban wastewater dilution on growth and biochemical properties of Scenedesmus sp. Desalin Water Treat 57:29363–29370

    Article  CAS  Google Scholar 

  • Wegmann K, Metzner H (1971) Synchronization of Dunaliella cultures. Arch Mikrobiol 78:360–367

  • Xiao R, Zheng Y (2016) Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv 34:1225–1244

    Article  CAS  Google Scholar 

  • Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z (2014a) Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour Technol 152:292–298

    Article  CAS  Google Scholar 

  • Zhu S, Wang Y, Huang W, Xu J, Wang Z, Xu J, Yuan Z (2014b) Enhanced accumulation of carbohydrate and starch in Chlorella zofingiensis induced by nitrogen starvation. Appl Biochem Biotechnol 174:2435–2445

    Article  CAS  Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM, Riet K v 't (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge the Microalgae Laboratory of Universidad Nacional Patagónica San Juan Bosco for supplying the C. vulgaris strain, Juguetes Perdidos brewery for supplying the effluent and Montserrat Vivas for improving the written English style.

Funding

This study was financially supported by the University Technological National, Program “Co-funded Postgraduate Scholarships for the Training of Doctors in Priority Areas”, Faculty Regional Buenos Aires (Project ID: IPUTIBA0004740TC); and ERANet-LAC - ELAC2014/BEE-0357 (GREENBIOREFINERY: Processing of brewery wastes with microalgae for producing valuable compounds).

Author information

Authors and Affiliations

Authors

Contributions

JLM: conceptualization, formal analysis, investigation, and writing—original draft; NC: formal analysis and investigation; PA: methodology, investigation, and resources; RM: methodology, investigation, and resources; VB: project administration and funding acquisition; MEP: conceptualization, methodology, supervision, and writing—review and editing. All authors read and approved the manuscript.

Corresponding author

Correspondence to Marina de Escalada Pla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lois-Milevicich, J., Casá, N., Alvarez, P. et al. Chlorella vulgaris biomass production using brewery wastewater with high chemical oxygen demand. J Appl Phycol 32, 2773–2783 (2020). https://doi.org/10.1007/s10811-020-02163-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02163-8

Keywords

Navigation