Skip to main content

Advertisement

Log in

Nonreflecting Boundary Conditions for a CSF Model of Fourth Ventricle: Spinal SAS Dynamics

  • Original Paper
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we introduce a one-dimensional model for analyzing the cerebrospinal fluid dynamics within the fourth ventricle and the spinal subarachnoid space (SSAS). The model has been derived starting from an original model of Linninger et al. and from the detailed mathematical analysis of two different reformulations. We show the steps of the modelization and the rigorous analysis of the first-order nonlinear hyperbolic system of equations which rules the new CSF model, whose conservative-law form and characteristic form are required for the boundary conditions treatment. By assuming sub-critical flows, for the particular dynamics we are dealing with, the most desirable option is to employ the nonreflecting boundary conditions, that allow the simple wave associated with the outgoing characteristic to exit the computational domain with no reflections. Finally, we carry out some numerical simulations related to different cerebral physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Amadori D, Ferrari S, Formaggia L (2007) Derivation and analysis of a fluid-dynamical model in thin and long elastic vessels. Netw Heterog Media 2:99–125

    Article  MathSciNet  Google Scholar 

  • Baeck K, Goffin J, Sloten JV (2011) The use of different CSF representations in a numerical head model and their effect on the results of FE head impact analyses. In: \(8^{th}\) European LS-DYNA Users Conference, Strasbourg

  • Bayliss A, Turkel E (1982) Far field boundary conditions for compressible flows. J Comput Phys 48:182–199

    Article  MathSciNet  Google Scholar 

  • Berselli LC, Guerra F, Mazzolai B et al (2014) Pulsatile viscous flows in elliptical vessels and annuli: solution to the inverse problem, with application to blood and cerebrospinal fluid flow. SIAM J Appl Math 74:40–59

    Article  MathSciNet  Google Scholar 

  • Bertram C (2009) A numerical investigation of waves propagating in the spinal cord and subarachnoid space in the presence of a syrinx. J Fluids Struct 25:1189–1205

    Article  Google Scholar 

  • Bertram C (2010) Evaluation by fluid/structure interaction spinal-cord simulation of the effects of subarachnoid-space stenosis on an adjacent syrinx. J Biomech Eng 132:061009

    Article  Google Scholar 

  • Bertram C, Brodbelt A, Stoodley M (2005) The origins of syringomyelia: numerical models of fluid/structure interactions in the spinal cord. J Biomech Eng 127:1099–1109

    Article  Google Scholar 

  • Buishas J, Gould I, Linninger AA (2014) A computational model of cerebrospinal fluid production and reabsorption driven by starling forces. Croat Med J 55:481–497

    Article  Google Scholar 

  • Čanić S, Kim EH (2003) Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels. Math Methods Appl Sci 26:1161–1186

    Article  MathSciNet  Google Scholar 

  • Cirovic S (2009) A coaxial tube model of the cerebrospinal fluid pulse propagation in the spinal column. J Biomech Eng 131:021008

    Article  Google Scholar 

  • Cirovic S, Kim M (2010) One-dimensional model for ceresbrospinal fluid pulse in the spinal column. In: 6th world congress of biomechanics (WCB (2010) Singapore. Springer 366–369

  • Clarke EC, Fletcher DF, Stoodley MA et al (2013) Computational fluid dynamics modelling of cerebrospinal fluid pressure in Chiari malformation and syringomyelia. J Biomech 46:1801–1809

    Article  Google Scholar 

  • Donatelli D, Marcati P, Romagnoli L (2018) Analysis of solutions for a cerebrospinal fluid model. Nonlinear Anal Real World Appl 44:417–448

    Article  MathSciNet  Google Scholar 

  • Donatelli D, Marcati P, Romagnoli L (2019) A comparison of two mathematical models of the cerebrospinal fluid dynamics. Math Biosci Eng 16:2811–2851

    Article  MathSciNet  Google Scholar 

  • Donea J, Giuliani S, Laval H, Quartapelle L (1984) Time-accurate solutions of advection–diffusion problems by finite elements. Comput Methods Appl Mech Eng 45:123–145

    Article  MathSciNet  Google Scholar 

  • Engquist B, Majda A (1977) Absorbing boundary conditions for the numerical simulation of waves. Math Comput 31:629–651

    Article  MathSciNet  Google Scholar 

  • Enzmann DR, Pelc NJ (1992) Brain motion: measurement with phase-contrast MR imaging. Radiology 185:653–660

    Article  Google Scholar 

  • Figueroa CA, Vignon-Clementel IE, Jansen KE et al (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195:5685–5706

    Article  MathSciNet  Google Scholar 

  • Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191:561–582

    Article  MathSciNet  Google Scholar 

  • Greitz D (2004) Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 27:145–165

    Google Scholar 

  • Gupta S, Soellinger M, Boesiger P et al (2009) Three-dimensional computational modeling of subjectspecific cerebrospinal fluid flow in the subarachnoid space. J Biomed Eng 131:021010

    Google Scholar 

  • Hedstrom GW (1979) Nonreflecting boundary conditions for nonlinear hyperbolic systems. J Comput Phys 30:222–237

    Article  MathSciNet  Google Scholar 

  • LeVeque R (1990) Numerical methods for conservation laws. Birkhauser, Basel

  • Linge SO, Haughton V, Løvgren AE et al (2011) Effect of tonsillar herniation on cyclic CSF flow studied with computational flow analysis. Am J Neuroradiol (AJNR) 32:1474–1481

    Article  Google Scholar 

  • Linninger AA, Tangen K, Hsu CY, Frim D (2016) Cerebrospinal fluid mechanics and its coupling to cerebrovascular dynamics. Annu Rev Fluid Mech 48:219–257

    Article  MathSciNet  Google Scholar 

  • Linninger AA, Tsakiris C, Zhu DC et al (2005) Pulsatile cerebrospinal fluid dynamics in the human brain. IEEE T Bio-Med Eng 52:557–565

    Article  Google Scholar 

  • Linninger AA, Xenos M, Sweetman B et al (2009) A mathematical model of blood, cerebrospinal fluid and brain dynamics. J Math Biol 59:729–759

    Article  MathSciNet  Google Scholar 

  • Martin BA, Reymond P, Novy J et al (2012) A coupled hydrodynamic model of the cardiovascular and cerebrospinal fluid system. Am J Physiol Heart Circul Physiol 302:H1492–H1509

    Article  Google Scholar 

  • Müller LO, Toro EF (2014) A global multiscale mathematical model for the human circulation with emphasis on the venous system. Int J Numer Methods Biomed Eng 30:681–725

    Article  MathSciNet  Google Scholar 

  • Nobile F (2001) Numerical approximation of fluid-structure interaction problems with applications to hemodynamics. PhD thesis, Ecole Polytechnique Federeale Lausanne

  • Ori Z, Monir G, Weiss J et al (1992) Heart rate variability. Frequency Domain Anal Cardiol Clin 10:499–537

    Google Scholar 

  • Papadakis G (2009) Coupling 3D and 1D fluid structure-interaction models for wave propagation in flexible vessels using a finite volume pressure-correction scheme. Commun Numer Methods Eng 25:533–551

    Article  MathSciNet  Google Scholar 

  • Pedley T (1980) The fluid mechanics of large blood vessels. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Penn RD, Lee MC, Linninger AA et al (2005) Pressure gradients in the brain in an experimental model of hydrocephalus. J Neurosurg 102:1069–1075

    Article  Google Scholar 

  • Pietrabissa R, Quarteroni A, Dubini G et al (2000) From the global cardiovascular system down to the local blood motion: preliminary applications of a multiscale approach. In: Proceedings of ECCOMAS2000 Conference, Barcelona, (CDRom)

  • Quarteroni A, Formaggia L (2004) Mathematical modelling and numerical simulation of the cardiovascular system. In: Handbook of numerical analysis, Vol XII, North Holland, Amsterdam, 3–127

  • Quarteroni A, Valli A (1994) Numerical approximation of partial differential equations. Springer Verlag Series in computational Mathematics 23

  • Quarteroni A, Veneziani A, Vergara C (2016) Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput Methods Appl Mech Eng 302:193–252

    Article  MathSciNet  Google Scholar 

  • Raksin PB, Alperin N, Sivaramakrishnan A et al (2003) Noninvasive intracranial compliance and pressure based on dynamic magnetic resonance imaging of blood flow and cerebrospinal fluid flow: Reviewof principles, implementation, and other noninvasive approaches. Neurosurg Focus 14:1–8

    Article  Google Scholar 

  • Romagnoli L (2019) Numerical simulations of different models describing cerebrospinal fluid dynamics. Rend Ma Appl (7). Online first, 28 p

  • Sass LR, Khani M, Natividad CG et al (2017) A 3D subject-specific model of the spinal subarachnoid space with anatomically realistic ventral and dorsal spinal cord nerve rootlets. Fluids Barriers CNS 16:36

    Article  Google Scholar 

  • Sherwin SJ, Franke V, Peirò J, Parker K (2003) One dimensional modelling of a vascular network in space-time variables. J Eng Math 47:217–250

    Article  MathSciNet  Google Scholar 

  • Tangen K, Hsu Y, Zhu D, Linninger AA (2015) CNS wide simulation of flow resistance and drug transport due to spinal microanatomy. J Biomech 48:2144–2154

    Article  Google Scholar 

  • Tangen K, Sullivan J, Holt RW et al (2019) In-vivo intrathecal tracer dispersion in cynomolgus monkey validates wide biodistribution along neuraxis. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2019.2930451

    Article  Google Scholar 

  • Thompson KW (1987) Time dependent boundary conditions for hyperbolic systems. J Comput Phys 68:1–24

    Article  MathSciNet  Google Scholar 

  • Toro EF, Thornber B, Zhang Q et al (2018) computational model for the dynamics of cerebrospinal fluid in the spinal subarachnoid space. J Biomech Eng 141:011004

    Article  Google Scholar 

  • Urquiza SA, Blanco PJ, Vènere MJ et al (2006) Multidimensional modelling for the carotid artery blood flow. Comput Methods Appl Mech Eng 195:4002–4017

    Article  MathSciNet  Google Scholar 

  • Vignon-Clementel IE, Figueroa CA, Jensen KE et al (2006) Outflow boundary conditions for three dimensional finite element modelling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195:3776–3796

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donatella Donatelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donatelli, D., Romagnoli, L. Nonreflecting Boundary Conditions for a CSF Model of Fourth Ventricle: Spinal SAS Dynamics. Bull Math Biol 82, 77 (2020). https://doi.org/10.1007/s11538-020-00749-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00749-4

Keywords

Navigation