Skip to main content
Log in

Improving the Mechanical Properties of Cf/ PEEK Composite by Implanting Functionalized Multi-Wall Carbon Nanopaper

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The multi-walled carbon nanotubes were prepared into nanopaper with three-dimensional network structure by ultrasonic dispersion technology and suction filtration, and then implanted into Cf / PEEK composite materials by mold pressing process. The microstructure, tensile strength, flexural strength and abrasion resistance of the composites were tested. The influence of the nanopaper on the properties of composites were discussed and analyzed. After implanting a well- dispersed PANI-functionalized nanopaper layer, the tensile strength and bending strength of the 0.1 mm nanopaper composite increased by 20.6% and 26.6% respectively, which meant that high load is needed to cause the composite to break. There are pores in the interface of 0.2 mm nanopaper composite after hot pressing, and the improvement of mechanical properties is not significant. Compared with the pure Cf / PEEK composite, the friction coefficient of 0.1 mm nanopaper composite is reduced by 0.05, and the wear rate is reduced by 26%. This should be ascribed to that the self-lubricating property of MWCNTs. The three-dimensional network structure of nanopaper with good thermal conductivity can disperse the heat generated in the friction process and reduce the contact area between the Si3N4 ball and the resin matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen, C.G., Zhang, C., Zhao, Z.Q., et al.: Effect of fiber reinforcement and fabrication process on the dynamic compressive behavior of PEEK composites[J]. Int. J. Mech. Sci. 155, 170–177 (2019)

    Article  Google Scholar 

  2. Wu, W., Geng, P., Li, G., Zhao, D., Zhang, H., Zhao, J.: Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS[J]. Materials. 8(9), 5834–5846 (2015)

    Article  CAS  Google Scholar 

  3. Hassan, E.A.M., Dengteng, G., Lili, Y., et al.: Highly boosting the interlaminar shear strength of CF/PEEK composites via introduction of PEKK onto activated CF[J]. Compos. A: Appl. Sci. Manuf. 112, 155–160 (2018)

    Article  CAS  Google Scholar 

  4. Lin, L., Schlarb, A.K.: Effect of the varied load conditions on the tribological performance and the thermal characteristics of PEEK-based hybrid composites[J]. Tribol. Int. 101, 218–225 (2016)

    Article  CAS  Google Scholar 

  5. Kumar, D., Rajmohan, T., et al.: Wear behavior of PEEK matrix composites: a review. Mater. Today Proc. [J]. 5(Issue 6, Part 2), 14583–14589 (2018)

    Article  CAS  Google Scholar 

  6. Dan, Z., et al.: Performance study of ultrasonic assisted processing of CNT nanopaper/solventless epoxy composite[J]. Compos. Part B Eng. (2019)

  7. Wang, Z., Zhao, G.-L.: Microwave absorption properties of carbon nanotubes–epoxy composites in a frequency range of 2–20 GHz[J]. Compos. Mater. 03, 17–23 (2013)

    Google Scholar 

  8. Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., Treacy, M.M.J.: Young’s modulus of single-walled nanotubes[J]. Phys. Rev. B. 58(20), 14013–14019 (1998)

    Article  CAS  Google Scholar 

  9. Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Geerlings, L.J., et al.: Individual single-wall carbon nanotubes as quantum devices[J]. Nature. 386, 474–477 (1997)

    Article  CAS  Google Scholar 

  10. Maruyama, S.: A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube[J]. Micro. Thermophys. Eng. 7, 41–50 (2003)

    Article  CAS  Google Scholar 

  11. Lahelin, M., Annala, M., Nykanen, A., Ruokoainen, J., Seppala, J.: In situ polymerized nanocomposites: polystyrene/CNT and poly(methyl methacrylate)/CNT compo-sites[J]. Comp. Sci. Technol. 71, 900–907 (2011)

    Article  CAS  Google Scholar 

  12. Mirbagheri, M.H., Akbari, M., Mehmandoust, B.: Proposing a new experimental correlation for thermal conductivity of nanofluids containing of functionalized multiwalled carbon nanotubes suspended in a binary base fluid[J]. Int. Commun. Heat Mass Transf. 98, 216–222 (2018)

    Article  CAS  Google Scholar 

  13. Boroushak, S.H., Ansari, R., Ajori, S.: Molecular dynamics simulations of the thermal conductivity of cross-linked functionalized single- and double-walled carbon nanotubes with polyethylene chains[J]. Diam. Relat. Mater. 86, 173–178 (2018)

    Article  CAS  Google Scholar 

  14. Jang, H.G., Yang, B., Khilc, M.-S., et al.: Comprehensive study of effects of filler length on mechanical, electrical, and thermal properties of multi-walled carbon nanotube/polyamide 6 composites[J]. Compos. Part A. 125, 105542 (2019)

    Article  CAS  Google Scholar 

  15. Kim, H.S., et al.: Synergistic enhancement of thermal conductivity in composites filled with expanded graphite and multi-walled carbon nanotube fillers via melt-compounding based on polymerizable low-viscosity oligomer matrix[J]. J. Alloys Compd. (2017)

  16. Thostenson, E.T., Chou, T.W.: Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization[J]. J. Phys. D. Appl. Phys. 35(16), L77–L80 (2002)

    Article  CAS  Google Scholar 

  17. Ji-Zhao, L., et al.: Impact and flexural properties of polypropylene composites reinforced with multi-walled carbon nanotubes[J]. Polym. Test. (2018)

  18. Kai, Wu, et al. Constructing conductive multi-walled carbon nanotubes network inside hexagonal boron nitride network in polymer composites for significantly improved dielectric property and thermal conductivity[J]. Compos. Sci. Technol., 2017

  19. Lee, G., Sung, M., Youk, J.H., et al.: Improved tensile strength of carbon nanotube-grafted carbon fiber reinforced composites[J]. Compos. Struct. 220, 580–591 (2019)

    Article  Google Scholar 

  20. Zhang, D., Cabrera, E., Zhao, Y., et al.: Improved sand erosion resistance and mechanical properties of multifunctional carbon nanofiber nanopaper-enhanced fiber reinforced epoxy composites[J]. Adv. Polym. Technol. (2017)

  21. Pei, W., et al.: Effect of MWCNT content on conductivity and mechanical and wear properties of copper foam/resin composite[J]. Compos. Part B Eng. (2019)

  22. Han, J.H., Zhang, H., Chu, P.F., Imani, A., Zhang, Z.: Friction and wear of high elec-trical conductive carbon nanotube buckypaper/epoxy composites. Compos. Sci. Technol. 114, 1–10 (2015)

    Article  CAS  Google Scholar 

  23. Zhao, J., Mao, J.Y., Li, Y.R., He, Y.Y., Luo, J.B.: Friction-induced nano-structural evolution of graphene as a lubrication additive. Appl. Surf. Sci. 434, 21–27 (2018)

    Article  CAS  Google Scholar 

  24. Jiaming, S.Y.: Highly enhanced thermal conductivity of thermoplastic nanocomposites with a low mass fraction of MWCNTs by a facilitated latex approach[J]. Compos. Part A Appl. Sci. Manuf. (2016)

Download references

Acknowledgements

The work reported here was supported by ‘the Fundamental Research Funds for the Central Universities, NO.NS2019035’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binbin Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Wang, X., Mao, B. et al. Improving the Mechanical Properties of Cf/ PEEK Composite by Implanting Functionalized Multi-Wall Carbon Nanopaper. Appl Compos Mater 27, 479–490 (2020). https://doi.org/10.1007/s10443-020-09814-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09814-6

Keywords

Navigation