Skip to main content
Log in

Study on the behavior of a temperature-sensitive hydrogel micro-channel via FSI and non-FSI approaches

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, the behavior of a temperature-sensitive hydrogel micro-channel is investigated by considering fluid–structure interaction (FSI). The micro-channel behavior is simulated numerically via both FSI and non-FSI frameworks. The results show the importance of FSI effects in these devices. FSI consideration affects the performance of the under-study micro-channel such as its closing temperature and stress field within the hydrogel part of the micro-channel. In addition, the flow rate of the micro-channel is calculated that depends on the deformation of the hydrogel and velocity field of the fluid domain in the FSI simulations. Finally, a parametric study is performed to examine the effect of inlet pressure of the micro-channel, the hydrogel thickness, the hydrogel cross-linking density, and the micro-channel width on the micro-channel performance. The obtained FSI results in comparison with those of non-FSI show that the FSI simulation is necessary for the micro-channels, especially for those of them with low cross-linking density and small thickness of the hydrogel. Furthermore, the FSI simulation is vital for those micro-channels with larger inlet pressures and larger widths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Richter, A., Paschew, G., Klatt, S., Lienig, J., Arndt, K.-F., Adler, H.-J.: Review on hydrogel-based pH sensors and microsensors. Sensors 8(1), 561–581 (2008)

    Article  Google Scholar 

  2. Mazaheri, H., Baghani, M., Naghdabadi, R., Sohrabpour, S.: Inhomogeneous swelling behavior of temperature sensitive PNIPAM hydrogels in micro-valves: analytical and numerical study. Smart Mater. Struct. 24(4), 045004 (2015)

    Article  Google Scholar 

  3. Eddington, D.T., Beebe, D.J.: Flow control with hydrogels. Adv. Drug Deliv. Rev. 56(2), 199–210 (2004)

    Article  Google Scholar 

  4. Deligkaris, K., Tadele, T.S., Olthuis, W., van den Berg, A.: Hydrogel-based devices for biomedical applications. Sens. Actuators B Chem. 147(2), 765–774 (2010)

    Article  Google Scholar 

  5. Dong, L., Jiang, H.: Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter 3(10), 1223–1230 (2007). https://doi.org/10.1039/B706563A

    Article  Google Scholar 

  6. Cai, S., Suo, Z.: Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels. J. Mech. Phys. Solids 59(11), 2259–2278 (2011)

    Article  MATH  Google Scholar 

  7. Marcombe, R., Cai, S., Hong, W.: A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter 6, 784–793 (2010)

    Article  Google Scholar 

  8. Drozdov, A.D.: Swelling of pH-responsive cationic gels: constitutive modeling and structure-property relations. Int. J. Solids Struct. 64, 176–190 (2015). https://doi.org/10.1016/j.ijsolstr.2015.03.023

    Article  Google Scholar 

  9. Suzuki, A., Tanaka, T.: Phase transition in polymer gels induced by visible light. Nature 346(6282), 345–347 (1990)

    Article  Google Scholar 

  10. Mazaheri, H., Baghani, M., Naghdabadi, R., Sohrabpour, S.: Coupling behavior of the pH/temperature sensitive hydrogels for the inhomogeneous and homogeneous swelling. Smart Mater. Struct. 25(8), 085034 (2016)

    Article  Google Scholar 

  11. Dolbow, J., Fried, E., Ji, H.: Chemically induced swelling of hydrogels. J. Mech. Phys. Solids 52(1), 51–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hong, W., Zhao, X., Zhou, J., Suo, Z.: A theory of coupled diffusion and large deformation in polymeric gels. J. Mech. Phys. Solids 56(5), 1779–1793 (2008)

    Article  MATH  Google Scholar 

  13. Chester, S.A., Anand, L.: A coupled theory of fluid permeation and large deformations for elastomeric materials. J. Mech. Phys. Solids 58(11), 1879–1906 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chester, S.A., Di Leo, C.V., Anand, L.: A finite element implementation of a coupled diffusion-deformation theory for elastomeric gels. Int. J. Solids Struct. 52, 1–18 (2015)

    Article  Google Scholar 

  15. Drozdov, A., Christiansen, J.: Time-dependent response of hydrogels under multiaxial deformation accompanied by swelling. Acta Mech. 229(12), 5067–5092 (2018)

    Article  Google Scholar 

  16. Zhu, J., Luo, J.: Effects of entanglements and finite extensibility of polymer chains on the mechanical behavior of hydrogels. Acta Mech. 229(4), 1703–1719 (2018)

    Article  MathSciNet  Google Scholar 

  17. Suzuki, A.: Phase transition in gels of sub-millimeter size induced by interaction with stimuli. In: Dusek, K. (ed.) Responsive Gels: Volume Transitions II, pp. 199–240. Springer, Berlin (1993)

    Chapter  Google Scholar 

  18. Dolbow, J., Fried, E., Ji, H.: A numerical strategy for investigating the kinetic response of stimulus-responsive hydrogels. Comput. Methods Appl. Mech. Eng. 194(42–44), 4447–4480 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ji, H., Mourad, H., Fried, E., Dolbow, J.: Kinetics of thermally induced swelling of hydrogels. Int. J. Solids Struct. 43(7–8), 1878–1907 (2006)

    Article  MATH  Google Scholar 

  20. Birgersson, E., Li, H., Wu, S.: Transient analysis of temperature-sensitive neutral hydrogels. J. Mech. Phys. Solids 56(2), 444–466 (2008)

    Article  MATH  Google Scholar 

  21. Chester, S.A., Anand, L.: A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: application to thermally responsive gels. J. Mech. Phys. Solids 59(10), 1978–2006 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kurnia, J.C., Birgersson, E., Mujumdar, A.S.: Finite deformation of fast-response thermo-sensitive hydrogels: a computational study. Polymer 53(12), 2500–2508 (2012)

    Article  Google Scholar 

  23. Ding, Z., Liu, Z., Hu, J., Swaddiwudhipong, S., Yang, Z.: Inhomogeneous large deformation study of temperature-sensitive hydrogel. Int. J. Solids Struct. 50(16–17), 2610–2619 (2013)

    Article  Google Scholar 

  24. Ding, Z., Toh, W., Hu, J., Liu, Z., Ng, T.Y.: A simplified coupled thermo-mechanical model for the transient analysis of temperature-sensitive hydrogels. Mech. Mater. 97, 212–227 (2016)

    Article  Google Scholar 

  25. Mazaheri, H., Baghani, M., Naghdabadi, R.: Inhomogeneous and homogeneous swelling behavior of temperature-sensitive poly-(N-isopropylacrylamide) hydrogels. J. Intell. Mater. Syst. Struct. 27(3), 324–336 (2016)

    Article  Google Scholar 

  26. Mazaheri, H.: Study of swelling behavior of temperature sensitive hydrogels considering inextensibility of network. Sci. Iran. 26(2), 887–896 (2019)

    Google Scholar 

  27. Beebe, D.J., Moore, J.S., Bauer, J.M., Yu, Q., Liu, R.H., Devadoss, C., Jo, B.H.: Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(6778), 588–590 (2000)

    Article  Google Scholar 

  28. He, T., Li, M., Zhou, J.: Modeling deformation and contacts of pH sensitive hydrogels for microfluidic flow control. Soft Matter 8(11), 3083–3089 (2012)

    Article  Google Scholar 

  29. Mazaheri, H., Ghasemkhani, A.: Analytical and numerical study of the swelling behavior in functionally graded temperature-sensitive hydrogel shell. J. Stress Anal. 3(2), 29–35 (2019)

    Google Scholar 

  30. Arbabi, N., Baghani, M., Abdolahi, J., Mazaheri, H., Mosavi-Mashhadi, M.: Study on pH-sensitive hydrogel micro-valves: a fluid-structure interaction approach. J. Intell. Mater. Syst. Struct. 28(12), 1589–1602 (2017)

    Article  Google Scholar 

  31. Mehner, P.J., Haefner, S., Franke, M., Voigt, A., Marschner, U., Richter, A.: Finite element model of a hydrogel-based micro-valve. In: ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems 2016, pp. V002T003A016–V002T003A016. American Society of Mechanical Engineers

  32. Kim, D., Beebe, D.J.: A bi-polymer micro one-way valve. Sens. Actuators A 136(1), 426–433 (2007)

    Article  Google Scholar 

  33. Mazaheri, H., Namdar, A., Amiri, A.: Behavior of a smart one-way micro-valve considering fluid-structure interaction. J. Intell. Mater. Syst. Struct. 29(20), 3960–3971 (2018)

    Article  Google Scholar 

  34. Afroze, F., Nies, E., Berghmans, H.: Phase transitions in the system poly(N-isopropylacrylamide)/water and swelling behaviour of the corresponding networks. J. Mol. Struct. 554(1), 55–68 (2000)

    Article  Google Scholar 

  35. Ha, S.T., Ngo, L.C., Saeed, M., Jeon, B.J., Choi, H.: A comparative study between partitioned and monolithic methods for the problems with 3D fluid-structure interaction of blood vessels. J. Mech. Sci. Technol. 31(1), 281–287 (2017)

    Article  Google Scholar 

  36. Degroote, J., Bathe, K.-J., Vierendeels, J.: Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput. Struct. 87(11–12), 793–801 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hashem Mazaheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, A., Mazaheri, H. Study on the behavior of a temperature-sensitive hydrogel micro-channel via FSI and non-FSI approaches. Acta Mech 231, 2799–2813 (2020). https://doi.org/10.1007/s00707-020-02673-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02673-z

Navigation