• Open Access

Thermal desorption of cryopumped gases from laser treated copper

L. Spallino, M. Angelucci, and R. Cimino
Phys. Rev. Accel. Beams 23, 063201 – Published 22 June 2020

Abstract

Recently, laser processing of copper samples has been demonstrated to produce rough surfaces whose nanostructuring ensures unquestionable advantages for electron cloud mitigation in future particle accelerators. The actual application of laser treated surfaces in accelerators implies that this new material is compliant with many issues, going from impedance vacuum properties to many others. A significant experimental effort is therefore ongoing to study and optimize their various properties of interest. Here we analyze their vacuum behavior versus temperature. To this end, we studied thermal programmed desorption from CO, CH4 and H2 once cryosorbed on laser treated copper substrate and on its flat counterpart. These molecules are typically present in the residual vacuum of any accelerator. The results show that the desorption of such gases from the laser treated substrates occurs in a much broader and higher temperature range with respect to what is observed from the flat substrate. We also show that, at equal doses, treated samples adsorb/desorb significantly more gas than their flat counterpart. These findings can be ascribed to their nanostructured porous morphology. A quantitative analysis is given, allowing to properly estimate fluctuations of the number of molecules during unavoidable temperature variations of the cryogenic vacuum system.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 8 April 2020
  • Accepted 11 June 2020

DOI:https://doi.org/10.1103/PhysRevAccelBeams.23.063201

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Accelerators & Beams

Authors & Affiliations

L. Spallino*, M. Angelucci, and R. Cimino

  • LNF-INFN, Frascati (Roma), Italy

  • *luisa.spallino@lnf.infn.it

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 23, Iss. 6 — June 2020

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Accelerators and Beams

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×