Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antibacterial and cytotoxic metabolites of termite-associated Streptomyces sp. BYF63

Abstract

Four anthraquinone derivatives, termstrin A, B, C and D (1–4), were isolated and purified from termite-associated Streptomyces sp. BYF63. Their structures were elucidated on the basis of extensive spectroscopic analyses (HR-ESI-MS, 1D and 2D NMR). Compounds 1 and 4 were found to possess potent antibacterial activities against Staphylococcus aureus, with the zone of inhibition (ZOI) values of 12.85 and 11.17 mm, respectively, which were comparable to that of penicillin sodium with ZOI of 13.15 mm. Furthermore, metabolite 1 showed moderate cytotoxicities against melanoma cell line A375 and gastric cancer cell line MGC-803, with IC50 values of 22.76 and 36.65 μM, respectively, which were less than those of referenced adriamycin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Brownlie JC, Johnson KN. Symbiont-mediated protection in insect hosts. Trends Microbiol. 2009;17:348–54.

    Article  CAS  Google Scholar 

  2. Zhang YL, Ge HM, Li F, Song YC, Tan RX. New phytotoxic metabolites from Pestalotiopsis sp. HC02, a fungus residing in Chondracris rosee gut. Chem Biodivers. 2008;5:2402–7.

    Article  CAS  Google Scholar 

  3. Zhang YL, Li S, Jiang DH, Kong LC, Zhang PH, Xu JD. Antifungal activities of metabolites produced by a termite-associated Streptomyces canus BYB02. J Agr Food Chem. 2013;61:1521–4.

    Article  CAS  Google Scholar 

  4. Gosalbes MJ, Latorre A, Lamelas A, Moya A. Genomics of intracellular symbionts in insects. Int J Med Microbiol. 2010;300:271–8.

    Article  CAS  Google Scholar 

  5. Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J, Currie CR. Bacterial protection of beetle−fungus mutualism. Science. 2008;322:63–63.

    Article  CAS  Google Scholar 

  6. Poulsen M, Oh DC, Clardy J, Currie CR. Chemical analyses of wasp-associated Streptomyces bacteria reveal a prolific potential for natural products discovery. PLoS ONE. 2011;6:e16763 https://doi.org/10.1371/journal.pone.0016763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Van Arnam EB, Ruzzini AC, Sit CS, Horn H, Pinto-Tomas AA, Currie CR. Selvamicin an atypical antifungal polyene from two alternative genomic contexts. Proc Natl Acad Sci USA 2016;113:12940–5.

    Article  Google Scholar 

  8. Oh DC, Poulsen M, Currie CR, Clardy J. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat Chem Biol 2009;5:391–3.

    Article  CAS  Google Scholar 

  9. Bode HB. Insects: true pioneers in anti-infective therapy and what we can learn from them. Angew Chem Int Ed. 2009;48:6394–6.

    Article  CAS  Google Scholar 

  10. Crawford JM, Clardy J. Bacterial symbionts and natural products. Chem Commun. 2011;47:7559–66.

    Article  CAS  Google Scholar 

  11. Li S, Shao MW, Lu YH, Kong LC, Jiang DH, Zhang YL. Phytotoxic and antibacterial metabolites from Fusarium proliferatum ZS07 isolated from the gut of long-horned grasshoppers. J Agr Food Chem. 2014;62:8997–9001.

    Article  CAS  Google Scholar 

  12. Yin CP, Jin LP, Sun FF, Xu X, Shao MW, Zhang YL. Phytotoxic and antifungal metabolites from Curvularia crepinii QTYC-1 isolated from the gut of Pantala flavescens. Molecules. 2018;23:951 https://doi.org/10.3390/molecules23040951.

    Article  PubMed Central  Google Scholar 

  13. Darby AC, Chandler SM, Welburn SC, Douglas AE. Aphid-symbiotic bacteria cultured in insect cell lines. Appl Environ Microbiol. 2005;71:4833–9.

    Article  CAS  Google Scholar 

  14. Cerulli A, Lauro G, Masullo M, Cantone V, Olas B. Cyclic diarylheptanoids from Corylus avellana green leafy covers: determination of their absolute configurations and evaluation of their antioxidant and antimicrobial activities. J Nat Prod. 2017;80:1703–13.

    Article  CAS  Google Scholar 

  15. Yang MD, Shen XB, Hu YS, Chen YY, Liu XH. Novel naphthalene-enoates: design and anticancer activity through regulation cell autophagy. Biomed Pharmacother. 2019;113:108747.

    Article  Google Scholar 

  16. Huang H, Wang F, Luo M, Chen Y, Song Y, Zhang W, et al. Halogenated anthraquinones from the marine-derived fungus Aspergillus sp. SCSIO F063. J Nat Prod. 2012;75:1346–52.

    Article  CAS  Google Scholar 

  17. Wang M, Kornsakulkarn J, Srichomthong K, Fengl T, Liu JK. Antimicrobial anthraquinones from cultures of the ant pathogenic fungus Cordyceps morakotii BCC 56811. J Antibiot. 2019;72:141–7.

    Article  CAS  Google Scholar 

  18. Takagi H, Nogawa T, Futamura Y, Takahashi S, Osada H. Kinanthraquinone, a new anthraquinone carboxamide isolated from Streptomyces reveromyceticus SN-593-44. J Antibiot. 2018;71:480–2.

    Article  CAS  Google Scholar 

  19. Mohammed A, Ibrahim MA, Tajuddeen N, Aliyu AB, Isah MB. Antidiabetic potential of anthraquinones: a review. Phytother Res. 2020;34::486–504.

    Article  Google Scholar 

  20. Kim KH, Ramadhar TR, Beemelmanns C, Cao SG, Poulsen M, Currie CR. Natalamycin A, an ansamycin from a termite-associated Streptomyces sp. Chem Em Sci. 2014;5:4333–8.

    Article  CAS  Google Scholar 

  21. Klassen JL, Lee SR, Poulsen M, Beemelmanns C, Kim KH. Efomycins K and L from a termite-associated Streptomyces sp. M56 and their putative biosynthetic origin. Front Microbiol. 2019;10:1739 https://doi.org/10.3389/fmicb.2019.01739.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Beemelmanns C, Ramadhar TR, Kim KH, Klassen JL, Cao SG, Wyche TP. Macrotermycins A-D, glycosylated macrolactams from a termite-associated Amycolatopsis sp. M39. Org Lett. 2017;19:1000–3.

    Article  CAS  Google Scholar 

  23. Bi SF, Li F, Song YC, Tan RX, Ge HM. New acrylamide and oxazolidin derivatives from a termite-associated Streptomyces sp. Nat Prod Commun. 2011;6:353–5.

    CAS  PubMed  Google Scholar 

  24. Gyanchandani ND, Nigam IC. Anthraquinone drugs. II. inadvertent acetylation of aloe-emodin during preparation of aglycones from crude drugs-UV, IR, and NMR spectra of the products. J Pharm Sci. 1969;58:833–5.

    Article  CAS  Google Scholar 

  25. Wijeratne EMK, Bashyal BP, Gunatilaka MK, Arnold AE, Gunatilaka AAL. Maximizing chemical diversity of fungal metabolites: biogenetically related heptaketides of the endolichenic fungus Corynespora sp. J Nat Prod. 2010;73:1156–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (31770007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinglao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Song, T., Wu, J. et al. Antibacterial and cytotoxic metabolites of termite-associated Streptomyces sp. BYF63. J Antibiot 73, 766–771 (2020). https://doi.org/10.1038/s41429-020-0334-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0334-1

This article is cited by

Search

Quick links