Skip to main content
Log in

\(L^2\)-decay estimate for the dissipative nonlinear Schrödinger equation in the Gevrey class

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We consider the Cauchy problem for the dissipative nonlinear Schrödinger equation with a cubic nonlinear term \(\lambda |u|^2u\), where \(\lambda \in {\mathbb {C}}\) with Im \(\lambda < 0\). We prove the global existence of a unique solution and obtain the uniform estimate in the Gevrey class. Using the uniform regularity estimate, we show the \(L^2\)-decay rate for the solution which has the Gevrey regularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barab, J.: Nonexistence of asymptotically free solutions of a nonlinear Schrödinger equation. J. Math. Phys. 25, 3270–3273 (1984)

    MathSciNet  MATH  Google Scholar 

  2. Cazenave, T.: Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI

  3. Cazenave, T., Weissler, F.: The Cauchy problem for the nonlinear Schrödinger equation in \(H^1\). Manuscr. Math. 61(4), 477–494 (1988)

    MATH  Google Scholar 

  4. Ginible, J., Ozawa, T.: Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension \(n \ge 2\). Comm. Math. Phys. 151, 619–645 (1993)

    MathSciNet  Google Scholar 

  5. Ginible, J., Velo, G.: On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Funct. Anal. 32(1), 1–31 (1979)

    Google Scholar 

  6. Ginible, J., Velo, G.: On a class of nonlinear Schrödinger equations. II. Scattering theory, general case. J. Funct. Anal. 32(1), 33–71 (1979)

    Google Scholar 

  7. Hayashi, N., Naumkin, P.: Asymptotics for large time of solutions to nonlinear Schrödinger and Hartree equations. Am. J. Math. 120, 369–389 (1998)

    MATH  Google Scholar 

  8. Hayashi, N., Li, C., Naumkin, P.I.: Time decay for nonlinear dissipative Schrödinger equations in optical fields. Adv. Math. Phys. Art. ID 3702738, pp. 7 (2016)

  9. Hayashi, N., Ozawa, T.: Scattering theory in the weighted \(L^2({{\mathbb{R}}})\) spaces for some Schrödinger equation. Ann. Inst. Henri Poincaré Phys. Théor. 48, 17–37 (1988)

    MathSciNet  MATH  Google Scholar 

  10. Hoshino, G.: Asymptotic behavior for solutions to the dissipative nonlinear Scrödinger equations with the fractional Sobolev space. J. Math. Phys. 60(11), 111504, 11 (2019)

    MATH  Google Scholar 

  11. Katayama, S., Li, C., Sunagawa, H.: A remark on decay rates of solutions for a system of quadratic nonlinear Schrödinger equations in 2D. Differ. Integral Equ. 27, 301–312 (2014)

    MATH  Google Scholar 

  12. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Kim, D.: A note on decay rates of solutions to a system of cubic nonlinear Schrödinger equations in one space dimension. Asymptot. Anal. 98(1-2), 79–90 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Kita, N., Shimomura, A.: Asymptotic behavior of solutions to Schrödinger equations with a subcritical dissipative nonlinearity. J. Differ. Equ. 242(1), 192–210 (2007)

    MATH  Google Scholar 

  15. Kita, N., Shimomura, A.: Large time behavior of solutions to Schrödinger equations with a dissipative nonlinearity for arbitrarily large initial data. J. Math. Soc. Japan 61(1), 39–64 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Li, C., Sunagawa, H.: Asymptotic behavior for solutions to the dissipative nonlinear Schrödinger equations with the fractional Sobolev space. Nonlinearity 29, 1537 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Ogawa, T., Sato, T.: \(L^2\)-Decay rate for the critical nonlinear Schrödinger equation with a small smooth data. Nonlinear Differ. Equ. Appl. 27, 18 (2020)

    MATH  Google Scholar 

  18. Ozawa, T.: Long range scattering for nonlinear Schrödinger equations in one space dimension. Comm. Math. Phys. 139, 479–493 (1991)

    MathSciNet  MATH  Google Scholar 

  19. Sunagawa, H.: Large time behavior of solutions to the Klein–Gordon equation with nonlinear dissipative terms. J. Math. Soc. Japan 58, 379–400 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Shimomura, A.: Asymtotic behavior of solutions for Schrödinger equations with dissipative nonlinearities. Comm. Partial Differ. Equ. 31, 1407–1423 (2006)

    MATH  Google Scholar 

  21. Strauss, W.A.: Nonlinear scattering theory at low energy. J. Funct. Anal. 41, 110–133 (1981)

    MathSciNet  MATH  Google Scholar 

  22. Tsutsumi, Y., Yajima, K.: The asymptotic behavior of nonlinear Schrödinger equations. Bull. Am. Math. Soc. 11, 186–188 (1984)

    MATH  Google Scholar 

  23. Yajima, K.: Existence of solutions for Schrödinger evolution equations. Comm. Math. Phys. 110, 415–426 (1987)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the editor and is deeply grateful to the referee for variable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Sato.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, T. \(L^2\)-decay estimate for the dissipative nonlinear Schrödinger equation in the Gevrey class. Arch. Math. 115, 575–588 (2020). https://doi.org/10.1007/s00013-020-01483-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-020-01483-y

Keywords

Mathematics Subject Classification

Navigation