Skip to main content

Advertisement

Log in

Probabilistic long-term reservoir operation employing copulas and implicit stochastic optimization

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This paper explores and combines implicit stochastic optimization (ISO) with copula functions to simulate long-term operating policies for a hydropower reservoir located in the Northeastern region of Brazil. Overall, ISO is considered as one of the most reliable techniques to derive long-term reservoir operating rules for reservoirs. This method employs a deterministic optimization model to estimate the optimal reservoir allocations under different inflow scenarios and later constructs operating rules for each month by relating the ensemble of the optimal releases, the initial storage volume and future inflow values. Those rules are generally established by fitting approaches including linear regression or nonlinear methods. This work illustrates the applicability to combine copulas with ISO to define reservoir operation policies based on a probabilistic procedure. Firstly, synthetic streamflow scenarios are simulated using a periodic vine copula model. Afterward, optimal release data are estimated by ISO for a set of inflow scenarios. Joint probability distribution functions based on copulas are constructed in order to forecast the expected release, conditioned to the initial reservoir volume and future inflows data. Results indicate that the proposed model represents a flexible approach to construct operating rules and derive long-term reservoir operating policies with low variability, allowing to reproduce different dependence structures of simulated data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aas K, Czado C, Frigessi A, Bakken H (2009) Pair-copula constructions of multiple dependence. Insur Math Econ 44:182–198

    Article  Google Scholar 

  • ANEEL (2019). Brazilian government, ministerial order no. 15 dated september 25, 2019. http://www2.aneel.gov.br/cedoc/prt2019015se.pdf

  • Ávila L, Mine MR, Kaviski E, Detzel DH, Fill HD, Bessa MR, Pereira GA (2019) Complementarity modeling of monthly streamflow and wind speed regimes based on a copula-entropy approach: A brazilian case study. Applied Energy, (p. 114127)

  • Azevedo SCd, Cardim GP, Puga F, Singh RP, Silva EAd (2018) Analysis of the 2012–2016 drought in the northeast brazil and its impacts on the sobradinho water reservoir. Remote Sens Lett 9:438–446

    Article  Google Scholar 

  • Bedford T, Cooke RM (2001) Probability density decomposition for conditionally dependent random variables modeled by vines. Ann Math Artif Intell 32:245–268

    Article  Google Scholar 

  • Bedford T, Cooke RM et al (2002) Vines-a new graphical model for dependent random variables. Anna Stat 30:1031–1068

    Article  Google Scholar 

  • Brechmann E, Schepsmeier U (2013) Cdvine: Modeling dependence with c-and d-vine copulas in r. J Stat Softw 52:1–27

    Article  Google Scholar 

  • Celeste AB, Billib M (2009) Evaluation of stochastic reservoir operation optimization models. Adv Water Resour 32:1429–1443

    Article  Google Scholar 

  • Celeste AB, Billib M (2010) The role of spill and evaporation in reservoir optimization models. Water Resour Manag 24:617–628

    Article  Google Scholar 

  • Celeste AB, Billib M (2012) Improving implicit stochastic reservoir optimization models with long-term mean inflow forecast. Water Resour Manag 26:2443–2451

    Article  Google Scholar 

  • Celeste AB, Curi WF, Curi RC (2009) Implicit stochastic optimization for deriving reservoir operating rules in semiarid brazil. Pesqui Oper 29:223–234

    Article  Google Scholar 

  • Chen L, Singh VP (2018) Entropy-based derivation of generalized distributions for hydrometeorological frequency analysis. J Hydrol 557:699–712

    Article  Google Scholar 

  • Cheng C-T, Wang W-C, Xu D-M, Chau K (2008) Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos. Water Resour Manag 22:895–909

    Article  Google Scholar 

  • De Souza Zambelli M, Martins LS, Soares Filho S (2013) Advantages of deterministic optimization in long-term hydrothermal scheduling of large-scale power systems. In: 2013 IEEE Power & Energy Society General Meeting, pp 1–5. IEEE

  • Diniz AL, Costa F, Pimentel AL, Xavier L, Maceira M (2008) Improvement in the hydro plants production function for the mid-term operation planning model in hydrothermal systems. In: International Conference on Engineering Optimization-engopt 2008. Citeseer

  • Erhardt TM, Czado C, Schepsmeier U (2015) R-vine models for spatial time series with an application to daily mean temperature. Biometrics 71:323–332

    Article  Google Scholar 

  • Favre A-C, El Adlouni S, Perreault L, Thiémonge N, Bobée B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40

  • Genest C, Favre A-C (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12:347–368

    Article  Google Scholar 

  • Giuliani M, Castelletti A, Pianosi F, Mason E, Reed PM (2016) Curses, tradeoffs, and scalable management: advancing evolutionary multiobjective direct policy search to improve water reservoir operations. J Water Resour Plan Manag 142:04015050

    Article  Google Scholar 

  • Gringorten II (1963) A plotting rule for extreme probability paper. J Geophys Res 68:813–814

    Article  Google Scholar 

  • Guo S, Zhang H, Chen H, Peng D, Liu P, Pang B (2004) A reservoir flood forecasting and control system for china/un système chinois de prévision et de contrôle de crue en barrage. Hydrol Sciences J 49

  • Hao Z, Singh VP (2009) Entropy-based parameter estimation for extended burr xii distribution. Stoch Environ Res Risk Assess 23:1113

    Article  Google Scholar 

  • Hao Z, Singh VP (2015) Drought characterization from a multivariate perspective: A review. J Hydrol 527:668–678

    Article  Google Scholar 

  • Jaworski P, Durante F, Hardle WK, Rychlik T (2010) Copula theory and its applications, vol 198. Springer, New York

    Book  Google Scholar 

  • Jaynes ET (1957a) Information theory and statistical mechanics. Phys Rev 106:620

    Article  Google Scholar 

  • Jaynes ET (1957b) Information theory and statistical mechanics. ii. Phys Rev 108:171

    Article  Google Scholar 

  • Jaynes ET (1982) On the rationale of maximum-entropy methods. Proc IEEE 70:939–952

    Article  Google Scholar 

  • Ji C-M, Zhou T, Huang H-T (2014) Operating rules derivation of jinsha reservoirs system with parameter calibrated support vector regression. Water Resour Manag 28:2435–2451

    Article  Google Scholar 

  • Joe H (1996) Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters. Lecture Notes-Monograph Series, pp 120–141

  • Joe H (1997) Multivariate models and multivariate dependence concepts. CRC Press, Boca Raton

    Book  Google Scholar 

  • Joe H (2014) Dependence modeling with copulas. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Kapur JN, Kesavan HK (1992) Entropy optimization principles and their applications. In: Singh PV (ed) Entropy and energy dissipation in water resources. Springer, Dordrecht, pp 3–20

    Chapter  Google Scholar 

  • Karamouz M, Ahmadi A, Moridi A (2009) Probabilistic reservoir operation using bayesian stochastic model and support vector machine. Adv Water Resour 32:1588–1600

    Article  Google Scholar 

  • Khedun CP, Mishra AK, Singh VP, Giardino JR (2014) A copula-based precipitation forecasting model: Investigating the interdecadal modulation of enso’s impacts on monthly precipitation. Water Resour Res 50:580–600

    Article  Google Scholar 

  • Kolmogorov A (1933) Sulla determinazione empirica di una lgge di distribuzione. Inst Ital Attuari Giorn 4:83–91

    Google Scholar 

  • Kong X, Huang G, Fan Y, Li Y (2015) Maximum entropy-gumbel-hougaard copula method for simulation of monthly streamflow in Xiangxi river, China. Stoch Environ Res Risk Assess 29:833–846

    Article  Google Scholar 

  • Labadie JW (2004) Optimal operation of multireservoir systems: State-of-the-art review. J Water Resour Plan Manag 130:93–111

    Article  Google Scholar 

  • Lee T, Salas JD (2011) Copula-based stochastic simulation of hydrological data applied to nile river flows. Hydrol Res 42:318–330

    Article  Google Scholar 

  • Lei X-H, Tan Q-F, Wang X, Wang H, Wen X, Wang C, Zhang J-W (2018) Stochastic optimal operation of reservoirs based on copula functions. J Hydrol 557:265–275

    Article  Google Scholar 

  • Li L, Liu P, Rheinheimer DE, Deng C, Zhou Y (2014) Identifying explicit formulation of operating rules for multi-reservoir systems using genetic programming. Water Resour Manag 28:1545–1565

    Article  Google Scholar 

  • Lima AAB, Abreu F (2016) Sobradinho reservoir: governance and stakeholders. In: Increasing resilience to climate variability and change, pp 157–177. Springer

  • Liu P, Guo S, Xu X, Chen J (2011) Derivation of aggregation-based joint operating rule curves for cascade hydropower reservoirs. Water Resour Manag 25:3177–3200

    Article  Google Scholar 

  • Liu P, Li L, Chen G, Rheinheimer DE (2014) Parameter uncertainty analysis of reservoir operating rules based on implicit stochastic optimization. J Hydrol 514:102–113

    Article  Google Scholar 

  • Liu Z, Zhou P, Chen X, Guan Y (2015) A multivariate conditional model for streamflow prediction and spatial precipitation refinement. J Geophys Res Atmos 120:10–116

    Google Scholar 

  • Matthias S, Jan-frederik M (2017) Simulating copulas: stochastic models, sampling algorithms, and applications volume 6. # N/A

  • Mesbah SM, Kerachian R, Nikoo MR (2009) Developing real time operating rules for trading discharge permits in rivers: Application of bayesian networks. Environ Model Softw 24:238–246

    Article  Google Scholar 

  • Mousavi SJ, Ponnambalam K, Karray F (2007) Inferring operating rules for reservoir operations using fuzzy regression and anfis. Fuzzy Sets Syst 158:1064–1082

    Article  Google Scholar 

  • Nagesh Kumar D, Janga Reddy M (2007) Multipurpose reservoir operation using particle swarm optimization. J Water Resour Plann Manag 133:192–201

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part i–a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Neelakantan T, Pundarikanthan N (2000) Neural network-based simulation-optimization model for reservoir operation. J Water Resour Plan Manag 126:57–64

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. Springer, New York. MR2197664

  • Nesterov Y, Nemirovskii A (1994) Interior-point polynomial algorithms in convex programming, vol 13. SIAM, Philadelphia

    Book  Google Scholar 

  • Nguyen-Huy T, Deo RC, An-Vo D-A, Mushtaq S, Khan S (2017) Copula-statistical precipitation forecasting model in australia’s agro-ecological zones. Agric Water Manag 191:153–172

    Article  Google Scholar 

  • Patton A (2013) Copula methods for forecasting multivariate time series. In: Elliott G, Timmermann A (eds) Handbook of economic forecasting, vol 2. Elsevier, Oxford, pp 899–960

    Google Scholar 

  • Pereira G, Veiga A (2018) Par (p)-vine copula based model for stochastic streamflow scenario generation. Stoch Env Res Risk Assess 32:833–842

    Article  Google Scholar 

  • Pham MT, Vernieuwe H, De Baets B, Willems P, Verhoest N (2016) Stochastic simulation of precipitation-consistent daily reference evapotranspiration using vine copulas. Stoch Environ Res Risk Assess 30:2197–2214

    Article  Google Scholar 

  • Piccardi C, Soncini-Sessa R (1991) Stochastic dynamic programming for reservoir optimal control: dense discretization and inflow correlation assumption made possible by parallel computing. Water Resour Res 27:729–741

    Article  Google Scholar 

  • Powell WB (2007) Approximate dynamic programming: solving the curses of dimensionality, vol 703. Wiley, New York

    Book  Google Scholar 

  • Rani D, Moreira MM (2010) Simulation-optimization modeling: a survey and potential application in reservoir systems operation. Water Resour Manag 24:1107–1138

    Article  Google Scholar 

  • Razali NM, Wah YB et al (2011) Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. J Stat Model Anal 2:21–33

    Google Scholar 

  • Russell SO, Campbell PF (1996) Reservoir operating rules with fuzzy programming. J Water Resour Plan Manag 122:165–170

    Article  Google Scholar 

  • Sadiq R, Saint-Martin E, Kleiner Y (2008) Predicting risk of water quality failures in distribution networks under uncertainties using fault-tree analysis. Urban Water J 5:287–304

    Article  Google Scholar 

  • Salvadori G, De Michele C (2004) Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water Resour Res 40

  • Schwarz G et al (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Shannon C (1948) A mathematical theory of communication, bell system technical journal 27: 379-423 and 623–656. Mathematical Reviews (MathSciNet): MR10, 133e, 20

  • Shi W, Xia J (2016) Combined risk assessment of nonstationary monthly water quality based on markov chain and time-varying copula. Water Sci Technol 75:693–704

    Article  CAS  Google Scholar 

  • Simard C, Rémillard B (2015) Forecasting time series with multivariate copulas. Dependence Modeling, 3

  • Sklar A (1959) Fonctions de rpartition n dimensions et leurs marge. Publ Inst Stat Univ Paris 8:229231

    Google Scholar 

  • Sokolinskiy O, van Dijk D (2011) Forecasting volatility with copula-based time series models. Technical Report Tinbergen Institute Discussion Paper

  • Stedinger JR, Sule BF, Loucks DP (1984) Stochastic dynamic programming models for reservoir operation optimization. Water Resour Res 20:1499–1505

    Article  Google Scholar 

  • Suroso S, Bárdossy A (2018) Investigation of asymmetric spatial dependence of precipitation using empirical bivariate copulas. J Hydrol 565:685–697

    Article  Google Scholar 

  • Tejada-Guibert JA, Johnson SA, Stedinger JR (1995) The value of hydrologic information in stochastic dynamic programming models of a multireservoir system. Water Resour Res 31:2571–2579

    Article  Google Scholar 

  • Wang Z, Wang W, Liu C, Wang Z, Hou Y (2017) Probabilistic forecast for multiple wind farms based on regular vine copulas. IEEE Trans Power Syst 33:578–589

    Article  Google Scholar 

  • Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance. Clim Res 30:79–82

    Article  Google Scholar 

  • Wurbs RA (1993) Reservoir-system simulation and optimization models. J Water Resour Plan Manag 119:455–472

    Article  Google Scholar 

  • Yeh WW-G (1985) Reservoir management and operations models: a state-of-the-art review. Water Resour Res 21:1797–1818

    Article  Google Scholar 

  • Zambelli M, Siqueira T, Cicogna M, Soares S (2006) Deterministic versus stochastic models for long term hydrothermal scheduling. In: 2006 IEEE Power Engineering Society General Meeting (pp 7–pp). IEEE

  • Zambelli M, Soares Filho S, Toscano AE, Santos Ed, Silva Filho Dd (2011) Newave versus odin: comparison of stochastic and deterministic models for the long term hydropower scheduling of the interconnected brazilian system. Sba: Controle & Automação Sociedade Brasileira de Automatica, 22, 598–609

  • Zhang J, Liu P, Wang H, Lei X, Zhou Y (2015) A bayesian model averaging method for the derivation of reservoir operating rules. J Hydrol 528:276–285

    Article  Google Scholar 

  • Zhang L, Singh VP (2007) Trivariate flood frequency analysis using the gumbel-hougaard copula. J Hydrol Eng 12:431–439

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The authors would like to kindly thank the editors and the anonymous reviewers for the suggestions and further contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Ávila.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ávila, L., Mine, M.R.M. & Kaviski, E. Probabilistic long-term reservoir operation employing copulas and implicit stochastic optimization. Stoch Environ Res Risk Assess 34, 931–947 (2020). https://doi.org/10.1007/s00477-020-01826-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-020-01826-9

Keywords

Navigation