Skip to main content
Log in

Transformation of Alcohols into Nitriles under Electrocatalytic Oxidation Conditions

  • SHORT COMMUNICATIONS
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The conversion of alcohols into nitriles was studied under conditions of indirect electrochemical oxidation with a catalytic system 4-acetylamino-2,2,6,6-tetramethylpiperidine-1-oxyl–potassium iodide–pyridine in a two-phase aqueous organic medium of methylene chloride–aqueous sodium hydrocarbonate (pH 8.6) in the presence of hydroxylamine as a source of nitrogen. The desired products were obtained with yields of up to 70%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Kim, J., Kim, H. J., and Chang, S., Synthesis of aromatic nitriles using nonmetallic cyano-group sources, Angew. Chem., Int. Ed., 2012, vol. 51(48), p. 11948.

    Article  CAS  Google Scholar 

  2. Anbarasan, P., Schareina, T., and Beller, M., Recent developments and perspectives in palladium-catalyzed cyanation of aryl halides: synthesis of benzonitriles, Chem. Soc. Rev., 2011, vol. 40(10), p. 5049.

    Article  CAS  Google Scholar 

  3. Lindley, J., Tetrahedron report number 163: copper assisted nucleophilic substitution of aryl halogen, Tetrahedron, 1984, vol. 40(9), p. 1433.

    Article  CAS  Google Scholar 

  4. Beletskaya, I.P., Sigeev, A.S., Peregudov, A.S., and Petrovskii, P.V., Catalytic Sandmeyer cyanation as a synthetic pathway to aryl nitriles, J. Organomet. Chem., 2004, vol. 689(23), p. 3810.

    Article  CAS  Google Scholar 

  5. Kuo, C.-W., Zhu, J.-L., Wu, J.-D., Chu, C.-M., Yao, C.-F., and Shia, K.-S., A convenient new procedure for converting primary amides into nitriles, Chem. Commun., 2007, vol. 3, p. 301.

    Article  Google Scholar 

  6. Yamaguchi, K., Fujiwara, H., Ogasawara, Y., Kotani, M., and Mizuno, N., A tungsten–tin mixed hydroxide as an efficient heterogeneous catalyst for dehydration of aldoximes to nitriles, Angew. Chem., Int. Ed., 2007, vol. 46(21), p. 3922.

    Article  CAS  Google Scholar 

  7. Yin, W., Wang, C., and Huang, Y., Highly practical synthesis of nitriles and heterocycles from alcohols under mild conditions by aerobic double dehydrogenative catalysis, Org. Lett., 2013, vol. 15(8), p. 1850.

    Article  CAS  Google Scholar 

  8. Sridhar, M., Reddy, M.K.K., Sairam, V.V., Raveendra, J., Godala, K.R., Narsaiah, C., Ramanaiah, B.C., and Reddy, C.S., Acetohydroxamic acid: A new reagent for efficient synthesis of nitriles directly from aldehydes using Bi(OTf)3 as the catalyst, Tetrahedron Lett., 2012, vol. 53(27), p. 3421.

    Article  CAS  Google Scholar 

  9. Bobbitt, J.M., Bartelson, A.L., Bailey, W.F., Hamlin, T.A., and Kelly, C.B., Oxoammonium salt oxidations of alcohols in the presence of pyridine bases, J. Org. Chem., 2014, no. 79, p. 1055.

  10. Kelly, C.B., Lambert, K.M., Mercadante, M.A., Ovian, J.M., Bailey, W.F., and Leadbeater, N.E., Access to nitriles from aldehydes mediated by an oxoammonium salt, Angew. Chem., Int. Ed., 2015, vol. 54(14), p. 4241.

    Article  CAS  Google Scholar 

  11. Bobbitt, J. M., Bruckner, C., and Merbouh, N., Oxoammonium- and nitroxide-catalyzed oxidations of alcohols, Org. React., 2009, no. 74, p. 103.

  12. Kashparova, V.P., Klushin, V.A., Zhukova, I.Yu., Kashparov, I.S., Leontyeva, D.V., Il’chibaeva, I.B., Smirnova, N.V., Kagan, E.Sh., and Chernyshev, V.M., TEMPO-like nitroxide combined with an alkyl-substituted pyridine: An efficient catalytic system for the selective oxidation of alcohols with iodine, Tetrahedron Lett., 2017, vol. 58, p. 3517.

    Article  CAS  Google Scholar 

  13. Shen, Z.L., Chen, M., Fang, T.T., Li, M.C., Mo, W.M., Hu, B.X., Sun, N., and Hu, X.Q., Transformation of ethers into aldehydes or ketones: A catalytic aerobic deprotection/oxidation pathway, Tetrahedron Lett., 2015, vol. 56(21), p. 2768.

    Article  CAS  Google Scholar 

  14. Nutting, J.E., Rafiee, M., and Stahl, S.S., Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and related N-oxyl species: electrochemical properties and their use in electrocatalytic reactions, Chem. Rev., 2018, vol. 118(9), p. 4834.

    Article  CAS  Google Scholar 

  15. Lu, J.-J., Ma, J.-Q., Yi, J.-M., Shen, Z.-L., Zhong, Y.-J., Ma, C.-A., and Li, M.-C., Electrochemical polymerization of pyrrole containing TEMPO side chain on Pt electrode and its electrochemical activity, Electrochim. Acta, 2014, vol. 130, p. 412.

    Article  CAS  Google Scholar 

  16. Yi, J.M., Tang, D.Y., Song, D.D., Wu, X.H., Shen, Z.L., and Li, M.C., Selective oxidation of benzyl alcohol on poly (4-(3-(pyrrol-1-yl) propionamido)-2,2,6,6-tetramethyl-piperidin-1-yloxy) electrode, J. Solid State Electrochem., 2015, vol. 19(8), p. 2291.

    Article  CAS  Google Scholar 

  17. Okimoto, M. and Chiba, T., Electrochemical transformations of aldehydes into methyl carboxylates and nitriles, J. Org. Chem., 1988, vol. 53(1), p. 218.

    Article  CAS  Google Scholar 

  18. Kashparova, V.P., Kashparov, I.S., Zhukova, I.Yu., Astakhov, A.V., Ilchibaeva, I.B., and Kagan, E.Sh., Oxidative dimerization of alcohols in the presence of nitroxyl radical-iodine catalytic system, Russ. J. Gen. Chem., 2016, vol. 86, no. 11, p. 2423.

    Article  CAS  Google Scholar 

  19. Kashparova, V.P., Papina, E.N., Kashparov, I.I., Zhukova, I.Yu., Ilchibaeva, I.B., and Kagan, E.Sh., One-pot electrochemical synthesis of acid anhydrides from alcohols, Russ. J. Gen. Chem., 2017, vol. 87, no. 11, p. 1911.

    Article  Google Scholar 

  20. Kagan, E.Sh., Kashparova, V.P., Zhukova, I.Yu., and Kashparov, I.I., Oxidation of alcohols by iodine in the presence of nitroxyl radicals generated electrochemically, Russ. J. Applied Chem., 2010, vol. 83, no. 4, p. 693.

    Article  Google Scholar 

  21. Gaspa, S., Porcheddu, A., and De Luca, L., Metal-free direct oxidation of aldehydes to esters using TCCA, Org. Lett., 2015, vol. 17, p. 3666.

Download references

ACKNOWLEDGEMENTS

This study was performed on the laboratory equipment of the Nanotechnologies Multiaccess Center of Platov South-Russian State Polytechnic University.

Funding

The study was financially supported by the Russian Scientific Foundation (project no. 16-13-10444).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Kashparova or I. Yu. Zhukova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by L. Smolina

Published on the basis of materials of the XIX All-Russian Conference “Electrochemistry of Organic Compounds” (EKHOS-2018) (with international participation), Novocherkassk, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashparova, V.P., Shubina, E.N., Il’chibaeva, I.B. et al. Transformation of Alcohols into Nitriles under Electrocatalytic Oxidation Conditions. Russ J Electrochem 56, 422–425 (2020). https://doi.org/10.1134/S1023193520050055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520050055

Keywords:

Navigation