Skip to main content
Log in

Transient Response of Microfluidic Fuel Cell

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Diffusion boundary layer on the electrode surface of microfluidic fuel cells limits the mass transfer to the catalyst layer. Thus, investigation of the transient response of microfluidic fuel cell associated with the change in operating condition is not a trivial work. In this paper, transient characteristics of a microfluidic fuel cell upon changes in voltage load is investigated by applying a transient three-dimensional, two-phase and non-isothermal numerical model. Proposed model is developed with COMSOL multi-physics and governing equations are formulated based on the conservation laws for mass, momentum, species and electrical potentials. This model evaluates the effect of a dominant dynamic aspect of MFFC operation (mass transfer effect), accounts for transient convective and diffusive transport, and allows prediction of species concentration. Simulation results show that during step voltage change, the transient current lags behind voltage due to the time constant of reactant species transport. Also, simulation results show that the over/under shot of the current density occurs during the step change in the fuel cell voltage. The limited mass transport in the diffusion boundary layer causes a time delay between the voltage step change and the change of reactant distribution on the electrode surface. During the step voltage decrease/increase, the initial higher/lower reactant concentration on the electrode surface causes the over/under-shoot of current density. Simulation results show that the properties of the current over/undershoot can be varied according to the different values of functional parameters of the fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Hahn, R., Wagner, S., Schmitz, A., and Reichl, H., Development of micro fuel cells with organic substrates and electronics manufacturing technologies, J. Power Sources, 2004, vol. 131, p. 73.

    Article  CAS  Google Scholar 

  2. McLean, G.F., Djilali, N., Whale, M., and Niet, T., Application of micro-scale techniques to fuel cell systems design, Proc. 10th Canadian Hydrogen Conf., Quebec City, 2000, p. 349.

  3. Chang, M.H., Chen, F., and Fang, N.S., Analysis of membraneless fuel cell using laminar flow in a Y‑shaped microchannel, J. Power Sources, 2006, vol. 159, p. 810.

    Article  CAS  Google Scholar 

  4. Chen, F., Chang, M.H., and Lin, M.K., Analysis of membraneless formic acid microfuel cell using a planar microchannel, Electrochim. Acta, 2007, vol. 52, p. 2506.

    Article  CAS  Google Scholar 

  5. Ebrahimi Khabbazi, A., Richards, A.J., and Hoorfar, M., Numerical study of the effect of the channel and electrode geometry on the performance of microfluidic fuel cells, J. Power Sources, 2010, vol. 195, p. 8141.

    Article  CAS  Google Scholar 

  6. Feali, M.S. and Fathipour, M., Multi-objective optimization of microfluidic fuel cell, Russ. J. Electrochem., 2014, vol. 50, p. 561.

    Article  CAS  Google Scholar 

  7. Herlambang, Y.D., Shyu, J.C., and Lee, S.C., Numerical simulation of the performance of air-breathing direct formic acid microfluidic fuel cells, Micro Nano Lett., 2017, vol. 12, p. 860.

    Article  CAS  Google Scholar 

  8. Hollinger, A.S., Doleiden, D.G., Willis, M.G., DeLaney, S.C., Burbules, M.B., Miller, K.L., and Argun, N., Model-based analysis of thermal and geometrical effects in a microscale methanol fuel cell, Int. J. Hydrogen Energy, 2018, vol. 43, p. 5145.

    Article  CAS  Google Scholar 

  9. Moein-Jahromi, M., Movahed, S., and Kermani, M.J., Numerical study of the cathode electrode in the Microfluidic Fuel Cell using agglomerate model, J. Power Sources, 2015, vol. 277, p. 180.

    Article  CAS  Google Scholar 

  10. Sundmacher, K., Schultz, T., Zhou, S., Scott, K., Ginkel, M., and Gilles, E., Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis, Chem. Eng. Sci., 2001, vol. 56, p. 333.

    Article  CAS  Google Scholar 

  11. Ceraolo, M., Miulli, C., and Pozio, A., Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description, J. Power Sources, 2003, vol. 113, p. 131.

    Article  CAS  Google Scholar 

  12. Li, H.Y., Weng, W.C., Yan, W.M., and Wang, X.D., Transient characteristics of proton exchange membrane fuel cells with different flow field designs, J. Power Sources, 2010, vol. 196, p. 235.

    Article  Google Scholar 

  13. Yan, W.M., Li, H.Y., and Weng, W.C., Transient mass transport and cell performance of a PEM fuel cell, Int. J. Heat Mass Transf., 2017, vol. 107, p. 646.

    Article  CAS  Google Scholar 

  14. Amiri, S., Hayes, R.E., and Sarkar, P., Transient simulation of a tubular micro-solid oxide fuel cell, J. Power Sources, 2018, vol. 407, p. 63.

    Article  CAS  Google Scholar 

  15. Meng, H., Numerical investigation of transient responses of a PEM fuel cell using a two-phase non-isothermal mixed-domain model, J. Power Sources, 2007, vol. 171, p. 738.

    Article  CAS  Google Scholar 

  16. Nguyen, N.T. and Wereley, S.T., Fundamentals and Applications of Microfluidics, 2nd ed., Boston: Artech House, 2006.

    Google Scholar 

  17. Bard, J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: John Wiley Sons, 2000.

    Google Scholar 

  18. Bonnefont, A., Argoul, F., and Bazant, M.Z., Analysis of diffuse-layer effects on time-dependent interfacial kinetics, J. Electroanal. Chem., 2001, vol. 1–2, p. 52.

    Article  Google Scholar 

  19. Spraguel, I.B. and Dutta, P., Modeling of diffuse charge effects in a microfluidic based laminar flow fuel cell, Num. Heat Transf., 2011, vol. 59, p. 1.

    Article  Google Scholar 

  20. Ong, I.J., Double-layer capacitance in a dual lithium ion insertion cell, J. Newman Electrochem. Soc., 1999, vol. 146, p. 4360.

    Article  CAS  Google Scholar 

  21. Spiegel, C., Modeling and Simulation Using MATLAB, New York: Acad. Press, 2008.

    Google Scholar 

  22. Probstein, R.F., Physicochemical Hydrodynamics: an Introduction, 2nd ed., New York: John Wiley&Sons, 2003.

    Google Scholar 

  23. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, 2nd ed., New York: John Wiley&Sons, 2002.

    Google Scholar 

  24. Choban, E.R., Markoski, L.J., Wieckowski, A., and Kenis, P.J.A., Microfluidic fuel cell based on laminar flow, J. Power Sources, 2004, vol. 128, p. 54.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Feali.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feali, M.S. Transient Response of Microfluidic Fuel Cell. Russ J Electrochem 56, 437–446 (2020). https://doi.org/10.1134/S1023193520030040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520030040

Keywords:

Navigation