Skip to main content

Advertisement

Log in

Regulation of tumor infiltrated innate immune cells by adenosine

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Cancer has the ability to escape the immune system using different molecular actors. Adenosine is known to be involved in mechanisms which control inflammatory reactions and prevent excessive immune response. This purine nucleoside can be translocated from the cell or produced in the extracellular space by 5′-ectonucleotidases. Once bound to its receptors on the surface of immune effector cells, adenosine activates various molecular pathways, which lead to functional inhibition of the cell or its death. Some tumors are infiltrated by the different cells of immune system but are able to use adenosine as an immunosuppressive molecule and thus inhibit immune anticancer response. This mechanism is well described on adaptive cells, but much less on innate cells. This review outlines major effects of adenosine on innate immune cells, its consequences on cancer progression, and possible ways to block the adenosine-dependent immunosuppressive effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867. https://doi.org/10.1038/nature01322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barnes TA, Amir E (2017) HYPE or HOPE: the prognostic value of infiltrating immune cells in cancer. Br J Cancer 117:451–460. https://doi.org/10.1038/bjc.2017.220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kumar V (2013) Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go? Purinergic Signal 9:145–165. https://doi.org/10.1007/s11302-012-9349-9

    Article  CAS  PubMed  Google Scholar 

  4. Karmouty-Quintana H, Xia Y, Blackburn MR (2013) Adenosine signaling during acute and chronic disease states. J Mol Med 91:173–181. https://doi.org/10.1007/s00109-013-0997-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M, Bensimon A, Zamir G, Shewach DS, Kerem B (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145:435–446. https://doi.org/10.1016/j.cell.2011.03.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boison D, Yegutkin GG (2019) Adenosine metabolism: emerging concepts for cancer therapy. Cancer Cell 36:582–596. https://doi.org/10.1016/j.ccell.2019.10.007

    Article  CAS  PubMed  Google Scholar 

  7. Zylka MJ, Sowa NA, Taylor-Blake B, Twomey MA, Herrala A, Voikar V, Vihko P (2008) Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron 60:111–122. https://doi.org/10.1016/j.neuron.2008.08.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K (2018) Pharmacology of adenosine receptors: the state of the art. Physiol Rev 98:1591–1625. https://doi.org/10.1152/physrev.00049.2017

    Article  CAS  PubMed  Google Scholar 

  9. Horenstein AL, Bracci C, Morandi F, Malavasi F (2019) CD38 in adenosinergic pathways and metabolic re-programming in human multiple myeloma cells: in-tandem insights from basic science to therapy. Front Immunol 10:760. https://doi.org/10.3389/fimmu.2019.00760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899. https://doi.org/10.1016/j.cell.2010.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haskó G, Pacher P (2012) Regulation of macrophage function by adenosine. Arterioscler Thromb Vasc Biol 32:865–869. https://doi.org/10.1161/ATVBAHA.111.226852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Najar HM, Ruhl S, Bru-Capdeville AC, Peters JH (1990) Adenosine and its derivatives control human monocyte differentiation into highly accessory cells versus macrophages. J Leukoc Biol 47:429–439. https://doi.org/10.1002/jlb.47.5.429

    Article  CAS  PubMed  Google Scholar 

  13. Belikoff BG, Hatfield S, Georgiev P, Ohta A, Lukashev D, Buras JA, Remick DG, Sitkovsky M (2011) A2B adenosine receptor blockade enhances macrophage-mediated bacterial phagocytosis and improves polymicrobial sepsis survival in mice. JI 186:2444–2453. https://doi.org/10.4049/jimmunol.1001567

    Article  CAS  Google Scholar 

  14. Haskó G, Szabó C, Németh ZH et al (1996) Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Immunol 157:4634–4640

    PubMed  Google Scholar 

  15. Xaus J, Mirabet M, Lloberas J et al (1999) IFN-gamma up-regulates the A2B adenosine receptor expression in macrophages: a mechanism of macrophage deactivation. J Immunol 162:3607–3614

    CAS  PubMed  Google Scholar 

  16. Ferrante CJ, Pinhal-Enfield G, Elson G, Cronstein BN, Hasko G, Outram S, Leibovich SJ (2013) The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Rα) signaling. Inflammation 36:921–931. https://doi.org/10.1007/s10753-013-9621-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pinhal-Enfield G, Ramanathan M, Hasko G, Vogel SN, Salzman AL, Boons GJ, Leibovich SJ (2003) An angiogenic switch in macrophages involving synergy between toll-like receptors 2, 4, 7, and 9 and adenosine A2A receptors. Am J Pathol 163:711–721. https://doi.org/10.1016/S0002-9440(10)63698-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Velot E, Haas B, Léonard F, Ernens I, Rolland-Turner M, Schwartz C, Longrois D, Devaux Y, Wagner DR (2008) Activation of the adenosine-A3 receptor stimulates matrix metalloproteinase-9 secretion by macrophages. Cardiovasc Res 80:246–254. https://doi.org/10.1093/cvr/cvn201

    Article  CAS  PubMed  Google Scholar 

  19. Csóka B, Selmeczy Z, Koscsó B, Németh ZH, Pacher P, Murray PJ, Kepka-Lenhart D, Morris SM Jr, Gause WC, Leibovich SJ, Haskó G (2012) Adenosine promotes alternative macrophage activation via A 2A and A 2B receptors. FASEB J 26:376–386. https://doi.org/10.1096/fj.11-190934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Young A, Ngiow SF, Gao Y, Patch AM, Barkauskas DS, Messaoudene M, Lin G, Coudert JD, Stannard KA, Zitvogel L, Degli-Esposti MA, Vivier E, Waddell N, Linden J, Huntington ND, Souza-Fonseca-Guimaraes F, Smyth MJ (2018) A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. Cancer Res 78:1003–1016. https://doi.org/10.1158/0008-5472.CAN-17-2826

    Article  CAS  PubMed  Google Scholar 

  21. Lokshin A, Raskovalova T, Huang X, Zacharia LC, Jackson EK, Gorelik E (2006) Adenosine-mediated inhibition of the cytotoxic activity and cytokine production by activated natural killer cells. Cancer Res 66:7758–7765. https://doi.org/10.1158/0008-5472.CAN-06-0478

    Article  CAS  PubMed  Google Scholar 

  22. Miller JS, Cervenka T, Lund J et al (1999) Purine metabolites suppress proliferation of human NK cells through a lineage-specific purine receptor. J Immunol 162:7376–7382

    CAS  PubMed  Google Scholar 

  23. Neo SY, Yang Y, Julien R et al (2019) CD73 immune checkpoint defines regulatory NK-cells within the tumor microenvironment. J Clin Investig 130:1185–1198. https://doi.org/10.1172/JCI128895

    Article  Google Scholar 

  24. Wu S, Awaji S (2019) Tumor-associated neutrophils in cancer: going pro. Cancers 11:564. https://doi.org/10.3390/cancers11040564

    Article  CAS  PubMed Central  Google Scholar 

  25. Felsch A, Stöcker K, Borchard U (1995) Phorbol ester-stimulated adherence of neutrophils to endothelial cells is reduced by adenosine A2 receptor agonists. J Immunol 155:333–338

    CAS  PubMed  Google Scholar 

  26. McColl SR, St-Onge M, Dussault A-A et al (2006) Immunomodulatory impact of the A 2A adenosine receptor on the profile of chemokines produced by neutrophils. FASEB J 20:187–189. https://doi.org/10.1096/fj.05-4804fje

    Article  CAS  PubMed  Google Scholar 

  27. Bouma MG, Jeunhomme TM, Boyle DL et al (1997) Adenosine inhibits neutrophil degranulation in activated human whole blood: involvement of adenosine A2 and A3 receptors. J Immunol 158:5400–5408

    CAS  PubMed  Google Scholar 

  28. Gessi S, Varani K, Merighi S, Cattabriga E, Iannotta V, Leung E, Baraldi PG, Borea PA (2002) A(3) adenosine receptors in human neutrophils and promyelocytic HL60 cells: a pharmacological and biochemical study. Mol Pharmacol 61:415–424. https://doi.org/10.1124/mol.61.2.415

    Article  CAS  PubMed  Google Scholar 

  29. Gorzalczany Y, Akiva E, Klein O, Merimsky O, Sagi-Eisenberg R (2017) Mast cells are directly activated by contact with cancer cells by a mechanism involving autocrine formation of adenosine and autocrine/paracrine signaling of the adenosine A3 receptor. Cancer Lett 397:23–32. https://doi.org/10.1016/j.canlet.2017.03.026

    Article  CAS  PubMed  Google Scholar 

  30. Gorzalczany Y, Merimsky O, Sagi-Eisenberg R (2019) Mast cells are directly activated by cancer cell–derived extracellular vesicles by a CD73- and adenosine-dependent mechanism. Transl Oncol 12:1549–1556. https://doi.org/10.1016/j.tranon.2019.08.005

    Article  PubMed  PubMed Central  Google Scholar 

  31. Coillard A, Segura E (2019) In vivo differentiation of human monocytes. Front Immunol 10:1907. https://doi.org/10.3389/fimmu.2019.01907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Panther E, Idzko M, Herouy Y et al (2001) Expression and function of adenosine receptors in human dendritic cells. FASEB J 15:1963–1970. https://doi.org/10.1096/fj.01-0169com

    Article  CAS  PubMed  Google Scholar 

  33. Panther E, Corinti S, Idzko M, Herouy Y, Napp M, la Sala A, Girolomoni G, Norgauer J (2003) Adenosine affects expression of membrane molecules, cytokine and chemokine release, and the T-cell stimulatory capacity of human dendritic cells. Blood 101:3985–3990. https://doi.org/10.1182/blood-2002-07-2113

    Article  CAS  PubMed  Google Scholar 

  34. Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I, Carbone DP, Feoktistov I, Dikov MM (2008) Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112:1822–1831. https://doi.org/10.1182/blood-2008-02-136325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MKK, Huang X, Caldwell S, Liu K, Smith P, Chen JF, Jackson EK, Apasov S, Abrams S, Sitkovsky M (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci 103:13132–13137. https://doi.org/10.1073/pnas.0605251103

    Article  CAS  PubMed  Google Scholar 

  36. Fong L, Hotson A, Powderly JD, Sznol M, Heist RS, Choueiri TK, George S, Hughes BGM, Hellmann MD, Shepard DR, Rini BI, Kummar S, Weise AM, Riese MJ, Markman B, Emens LA, Mahadevan D, Luke JJ, Laport G, Brody JD, Hernandez-Aya L, Bonomi P, Goldman JW, Berim L, Renouf DJ, Goodwin RA, Munneke B, Ho PY, Hsieh J, McCaffery I, Kwei L, Willingham SB, Miller RA (2020) Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer. Cancer Discov 10:40–53. https://doi.org/10.1158/2159-8290.CD-19-0980

    Article  CAS  PubMed  Google Scholar 

  37. Antonioli L, Yegutkin GG, Pacher P, Blandizzi C, Haskó G (2016) Anti-CD73 in cancer immunotherapy: awakening new opportunities. Trends in Cancer 2:95–109. https://doi.org/10.1016/j.trecan.2016.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  38. Perrot I, Michaud H-A, Giraudon-Paoli M et al (2019) Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep 27:2411–2425.e9. https://doi.org/10.1016/j.celrep.2019.04.091

    Article  CAS  PubMed  Google Scholar 

  39. Woo S-R, Corrales L, Gajewski TF (2015) Innate immune recognition of cancer. Annu Rev Immunol 33:445–474. https://doi.org/10.1146/annurev-immunol-032414-112043

    Article  CAS  PubMed  Google Scholar 

  40. Vidyarthi A, Khan N, Agnihotri T, Negi S, Das DK, Aqdas M, Chatterjee D, Colegio OR, Tewari MK, Agrewala JN (2018) TLR-3 stimulation skews M2 macrophages to M1 through IFN-αβ signaling and restricts tumor progression. Front Immunol 9:1650. https://doi.org/10.3389/fimmu.2018.01650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang F, Parayath NN, Ene CI, Stephan SB, Koehne AL, Coon ME, Holland EC, Stephan MT (2019) Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun 10:3974. https://doi.org/10.1038/s41467-019-11911-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zaghi E, Calvi M, Marcenaro E, Mavilio D, di Vito C (2019) Targeting NKG2A to elucidate natural killer cell ontogenesis and to develop novel immune-therapeutic strategies in cancer therapy. J Leukoc Biol 105:1243–1251. https://doi.org/10.1002/JLB.MR0718-300R

    Article  CAS  PubMed  Google Scholar 

  43. Saxena M, Bhardwaj N (2018) Re-emergence of dendritic cell vaccines for cancer treatment. Trends Cancer 4:119–137. https://doi.org/10.1016/j.trecan.2017.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16:183–194. https://doi.org/10.1016/j.ccr.2009.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. García-Rocha R, Monroy-García A, Hernández-Montes J, Weiss-Steider B, Gutiérrez-Serrano V, del Carmen Fuentes-Castañeda M, Ávila-Ibarra LR, Don-López CA, Torres-Pineda DB, de Lourdes Mora-García M (2019) Cervical cancer cells produce TGF-β1 through the CD73-adenosine pathway and maintain CD73 expression through the autocrine activity of TGF-β1. Cytokine 118:71–79. https://doi.org/10.1016/j.cyto.2018.09.018

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

LPJ receives funding from Olav Raagholt og Gerd Meidel Raagholts stiftelse for forskning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Petter Jordheim.

Ethics declarations

Conflict of interest

Regina Strakhova declares that she has no conflict of interest.

Octavia Cadassou declares that she has no conflict of interest.

Emeline Cros-Perrial declares that she has no conflict of interest.

Lars Petter Jordheim declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strakhova, R., Cadassou, O., Cros-Perrial, E. et al. Regulation of tumor infiltrated innate immune cells by adenosine. Purinergic Signalling 16, 289–295 (2020). https://doi.org/10.1007/s11302-020-09701-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-020-09701-6

Keywords

Navigation