Skip to main content
Log in

Performance of nano-K-doped zirconate on modified opto-electrical and electrochemical properties of gelatin biopolymer nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nanocomposite (NC) films based on biopolymer gelatin incorporated with varying amounts of K-doped zirconate (K2ZrO3) nanoparticles (NPs) have been fabricated by solution intercalation technique. NPs obtained by combustion method and their TEM result revealed the average size of NPs is 18 nm ± 2. The effects of NPs content on structural and morphological behaviors of gelatin nanocomposite (NCs) have been established by XRD, FTIR and SEM methods. AC conductivity (σ) was performed using LCR meter. The σ increases with an increase in frequency and dosage of NPs where the maximum σ obtained is 5.73 × 10–5 S/cm for gelatin/4 wt% K2ZrO3 at 25 °C. Cyclic voltammetry data displayed that gelatin–K2ZrO3 NCs have electrochemical stability in the range – 0.5 to + 1 V. Charge–discharge data exhibited a higher specific capacitance of 26.5 F/g with higher discharge time for NC doped with 4 wt% K2ZrO3 as compared to pure gelatin. The optical behaviors of NCs were deduced by UV–visible (UV) spectroscopy, where the data showed a higher absorption intensity with increasing NPs, while band gap energy was reduced from 4.18 eV for pure gelatin to 2.91 eV for gelatin/4 wt% K2ZrO3. Swelling and contact angle data showed gelatin NC films tend to be less wettability as compared to pure gelatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tang XZ, Kumar P, Alavi S, Sandeep KP (2012) Recent advances in biopolymers and biopolymer based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52(5):426–442

    Article  CAS  PubMed  Google Scholar 

  2. Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP (2005) Recent advances in biodegradable nanocomposites. J Nanosci Nanotechnol 5:497–526

    Article  CAS  PubMed  Google Scholar 

  3. Lu DR, Xiao CM, Xu SJ (2009) Starch-based completely biodegradable polymer materials. Expr Polym Lett 3:366–375

    Article  CAS  Google Scholar 

  4. Mekonnena T, Mussonea P, Khalil H, Bressler D (2013) Progress in bio-based plastics and plasticizing modifications. J Mater Chem A 1:13379–13398

    Article  CAS  Google Scholar 

  5. Arvanitoyannis IS (2002) Formation and properties of collagen and gelatin films and coatings. In: Gennadios A (ed) Protein-based films and coatings. CRC Press, Boca Raton, pp 275–304

    Google Scholar 

  6. Chen HC, Jao WC, Yang MC (2009) Characterization of gelatin nanofibers electrospun using ethanol/formic acid/water as a solvent. Polym Adv Technol 20:98–103

    Article  CAS  Google Scholar 

  7. Thabet A, Ebnalwaled AA (2017) Improvement of surface energy properties of PVC nanocomposites for enhancing electrical applications. Measurement 110:78–83

    Article  Google Scholar 

  8. Adel MNS, Murad QAA, Nithin KS, Madhukar BS, Siddaramaiah B (2018) The effect of cesium aluminate nanofiller on optical properties of poly vinyl pyrrolidone nanocomposite films. Polymer-Plast Technol Eng 57:1188–1196

    Article  CAS  Google Scholar 

  9. Suma GR, Subramani NK, Latha BV, Nagaraj SK, Shivanna S, Suggala V, Sathyanarayana S (2016) Gent to refractive index engineering of strontium doped zirconium oxide (SZO) reinforced poly vinyl pyrrolidine composite films: effect of dopant content and annealing temperature. Intl J Eng Sci 6:5703–5709

    Google Scholar 

  10. Murad QAA, Somesh TE, Gayitri HM, Fares HA, Siddaramaiah B (2020) Optimized nano-perovskite lanthanum cuprate decorated PVA based solid polymer electrolyte. Polym-Plast Technol Mater 59:215–229

    Google Scholar 

  11. Bohn HG, Schober T (2000) Electrical conductivity of the high-temperature proton conductor BaZr0.9Y0.1O2.95. J Am Ceram Soc 83:768–772

    Article  CAS  Google Scholar 

  12. Chen XX, Rieth L, Miller MS, Solzbacher F (2009) High temperature humidity sensors based on sputtered Y-doped BaZrO3 thin films. Sens Actuators B Chem 137:578–585

    Article  CAS  Google Scholar 

  13. Kumar HP, Vijayakumar C, George CN, Solomon S, Jose R, Thomas JK, Koshy J (2008) Characterization and sintering of BaZrO3 nanoparticles synthesized through a single-step combustion process. J Alloy Compd 458:528–531

    Article  CAS  Google Scholar 

  14. Song S, Kotobuki M, Zheng F, Xu C, Hu N, Lu L, Wang Y, Li WD (2017) Y-doped Na2ZrO3: a Na-rich layered oxide as a high-capacity cathode material for sodium-ion batteries. ACS Sustain Chem Eng 5:4785–4792

    Article  CAS  Google Scholar 

  15. Shanmuganathan G, Banu IBS, Krishnan S, Ranganathan B (2013) Influence of K-doping on the optical properties of ZnO thin films grown by chemical bath deposition method. J Alloy Compd 562:187–193

    Article  CAS  Google Scholar 

  16. Aksoy S, Yasemin C, Ilican S, Caglar M (2012) Sol-gel derived Li-Mg co-doped ZnO films: preparation and characterization via XRD, XPS, FESEM. J Alloys Compd 512:171–178

    Article  CAS  Google Scholar 

  17. Zhang YW, Zhuang SD, Xu XY, Hu JG (2013) Transparent and UV-shielding ZnO-PMMA nanocomposite films. Opt Mater 36:169–172

    Article  CAS  Google Scholar 

  18. Tao P, Li Y, Rungta A, Viswanath A, Gao J, Benicewicz BC, Siegel RW, Schadler LS (2011) TiO2 nanocomposites with high refractive index and transparency. J Mater Chem 21:18623–18629

    Article  CAS  Google Scholar 

  19. Zak AK, Majid WHA, Darroudi M, Yousefi R (2011) Synthesis and characterization of ZnO nanoparticles prepared in gelatin media. Mater Lett 65:70–73

    Article  CAS  Google Scholar 

  20. Azizian KY, Bodagh FS, Gheshlaghi EA, Khodayari A (2017) Characterization of some electrical properties of cds-gelatin nanocomposites using hall measurement technique. J Nanoelectron Optoelectron 12:1–5

    Article  CAS  Google Scholar 

  21. Ebnalwaled AA, Ismaiel AM (2019) Developing novel UV shielding films based on PVA/Gelatin/0.01CuO nanocomposite: on the properties optimization using c-irradiation. Measurement 13:89–100

    Article  Google Scholar 

  22. Wang ZL, Xu D, Zhong HX, Wang J, Meng FL, Zhang XB (2015) Gelatin-derived sustainable carbon-based functional materials for energy conversion and storage with controllability of structure and component. Sci Adv 1:1400035(1–9)

    Google Scholar 

  23. Murad QAA, Adel MNS, Gayitri HM, Siddaramaiah B (2020) Impact of nano-perovskite La2CuO4 on dc-conduction, opto-electrical sensing and thermal behavior of PVA nanocomposite films. Polym-Plast Technol Mater 59:469–483

    Google Scholar 

  24. Liu F, Antoniou J, Li Y, Ma J, Zhong F (2015) Effect of sodium acetate and drying temperature on physicochemical and thermomechanical properties of gelatin films. Food Hydrocoll 45:140–149

    Article  CAS  Google Scholar 

  25. Utiye AS, Awasthi SK, Bajpai SK, Mishra B (2017) Electrical and mechanical characterization of gelatin/poly(aniline) composite films. Adv Mater Proc 2:337–341

    Article  Google Scholar 

  26. Viera DF, Avellaneda CO, Pawlicka A (2008) A.C impedance, X-ray diffraction and DSC investigation on gelatin based-electrolyte with LiClO4. Mol Cryst Liq Cryst 485:843–852

    Article  CAS  Google Scholar 

  27. Andreuccetti C, Carvalho RA, García TG, Bustos FM (2011) Grosso C R F Effect of surfactants on the functional properties of gelatin-based edible films. J Food Eng 103:129–136

    Article  CAS  Google Scholar 

  28. Li Y, Jiang Y, Liu F, Ren F, Zhao G, Leng X (2011) Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocoll 25:1098–1104

    Article  CAS  Google Scholar 

  29. Qingyan H, Zhang Y, Cai X, Wang S (2016) Fabrication of gelatin–TiO2 nanocomposite film and its structural, antibacterial and physical properties. Intl J Biol Macromol 84:153–160

    Article  CAS  Google Scholar 

  30. Murad QAA, Adel MNS, Subramani N, Madukar BS, Siddaramaiah B (2017) Optical parameters, electrical permittivity and I–V characteristics of PVA/Cs2CuO2 nanocomposite films for opto-electronic applications. J Mater Sci Mater Electron 28:8074–8086

    Article  CAS  Google Scholar 

  31. Gayitri HM, Murad QAA, Madhukar BS, Siddaramaiah B, Gnana PAP (2018) Structural and opto-electrical exploration of modulated PVA films with hybrid CaNiAl2O5 nanofillers. Polymer-Plast Technol Eng. 58:1110–1124

    Google Scholar 

  32. Mohamed R, Harraz F, Shawky A (2014) CuO nanobelts synthesized by a template-free hydrothermal approach with optical and magnetic characteristics. Ceram Int 40:2127–2133

    Article  CAS  Google Scholar 

  33. Murad QAA, Adel MNS, Siddaramaiah B (2018) Effects of the electrolyte content on the electrical permittivity, thermal stability, and optical dispersion of poly (vinyl alcohol)–cesium copper oxide–lithium perchlorate nanocomposite solid-polymer electrolytes. J Appl Polym Sci 135:45852(1–14)

    Google Scholar 

  34. Abd El-Kader FH, Gafer SA, Basha AF, Bannan SI, Basha MAF (2010) Thermal and optical properties of gelatin/poly(vinyl alcohol) blends. J Appl Polym Sci 118:413–420

    Article  CAS  Google Scholar 

  35. Abdelaziz M, Ghannam MM (2010) Influence of titanium chloride addition on the optical and dielectric properties of PYA films. Phys B 405:958–964

    Article  CAS  Google Scholar 

  36. Somesh TE, Murad QAA, Madhukar BS, Siddaramaiah B (2018) Photosensitization of optical band gap modified polyvinyl alcohol films with hybrid AgAlO2 nanoparticles. J Mater Sci Mater Electron 30:37–49

    Article  CAS  Google Scholar 

  37. Kumar V, Singh JK (2010) Model for calculating the refractive index of different materials. Indian J Pure Appl Phys 48:571–574

    CAS  Google Scholar 

  38. Zimmermann L, Weibel M, Caseri W, Suter UW (1993) High refractive index films of polymer nanocomposites. J Mater Res 8:1742–1748

    Article  CAS  Google Scholar 

  39. Lotfy S, Fawzy YHA (2014) Characterization and enhancement of the electrical performance of radiation modified poly (vinyl) alcohol/gelatin copolymer films doped with carotene. J Radiat Res Appl Sci 7:338–345

    Article  Google Scholar 

  40. Mahendia S, Tomara AK, Kumar S (2010) Electrical conductivity and dielectric spectroscopic studies of PVA–Ag nanocomposite films. J Alloys Compd 508:406–411

    Article  CAS  Google Scholar 

  41. Singh V, Kulkarni AR, Mohan TRR (2003) Dielectric properties of aluminum–epoxy composites. J Appl Polym Sci 90:3602–3608

    Article  CAS  Google Scholar 

  42. Leonat L, Sbârcea G, Brânzoi IV (2013) Cyclic voltammetry for energy levels estimation of organic materials. UPB Sci Bull Ser B Chem Mater Sci 75:111–118

    CAS  Google Scholar 

  43. Arof AK, Kufian MZ, Syukur MF, Aziz MF, Abdelrahman AE, Majid SR (2012) Electrical double layer capacitor using poly(methyl methacrylate)–C4BO8Li gel polymer electrolyte and carbonaceous material from shells of mata kucing (Dimocarpus longan) fruit. Electrochim Acta 74:39–45

    Article  CAS  Google Scholar 

  44. Vicentini R, Silva LMD, Junior EPC, Alves TA, Nunes WG, Zanin H (2019) How to measure and calculate equivalent series resistance of electric double-layer capacitors. Molecules 24:1452(1–9)

    Article  CAS  Google Scholar 

  45. Lim CS, Teoh KH, Liew CW, Ramesh S (2014) Capacitive behavior studies on electrical double layer capacitor using poly(vinyl alcohol) lithium perchlorate based polymer electrolyte incorporated with TiO2. Mater Chem Phys 143:661–667

    Article  CAS  Google Scholar 

  46. Jianlong Z, Congde Q, Weiliang L, Qinze L (2017) Gelation, network structure and properties of physically crosslinked gelatin gels: effect of salt cation valence. J Macromol Sci Part B 56:739–748

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddaramaiah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bommalapura Hanumaiah, A., Al-Gunaid, M.Q.A. & Siddaramaiah Performance of nano-K-doped zirconate on modified opto-electrical and electrochemical properties of gelatin biopolymer nanocomposites. Polym. Bull. 78, 3023–3041 (2021). https://doi.org/10.1007/s00289-020-03251-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03251-y

Keywords

Navigation