Skip to main content
Log in

Electrically Control Lateral Shift Owning to Guided-Wave Surface Plasmon Resonance with a Lithium Niobate Prism

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Electrically controlled lateral shift by an electro-optic crystal prism is studied theoretically. The resonance point of excitation of guided-wave surface plasmon resonance (GWSPR) can be controlled by altering the refractive index of the prism. That is to say, the positions corresponding to the least reflectivity and the largest lateral shift could be conveniently modulated while the lithium niobate prism is operated in an external electric field. The maximal lateral shift is obtained at the excitation of GWSPR when the thickness of the silver film is optimized. The results of numerical simulations confirm theoretical calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goos F, Hänchen H (1947) Ein neuer und fundamentaler Versuch zur Totalreflection. Ann. Phys. 436:333–346

    Article  Google Scholar 

  2. Aiello A (2012) Goos–Hänchen and imbert–fedorov beam shifts: an novel perspective. New Joural of physics 14:013058

    Article  Google Scholar 

  3. Bliokh KY, Aiello A (2013) Goos–Hänchen and imbert–fedorov beam shifts: an overview. J Opt 15(1):014001

    Article  Google Scholar 

  4. Xiang Y, Dai X, Wen S (2007) Negative and positive Goos–Hänchen shifts of a light beam transmitted from an indefinite medium slab. Applied Physics A 87(2):285–290

    Article  CAS  Google Scholar 

  5. Wang LG, Chen H, Zhu SY (2005) Large negative Goos-Hänchen shift from a weakly absorbing dielectric slab. Opt Lett 30(21):2936–2938

    Article  Google Scholar 

  6. Merano M, Aiello A, Gw TH, van Exter MP, Eliel ER, Woerdman JP (2007) Observation of Goos-Hänchen shifts in metallic reflection. Optics Express 15(24):15928–15934

    Article  CAS  Google Scholar 

  7. Wan Y, Zheng Z, Kong W, Zhao X, Liu Y, Bian Y et al (2012) Nearly three orders of magnitude enhancement of Goos-Hänchen shift by exciting Bloch surface wave. Opt Express 20(8):8998–9003

    Article  Google Scholar 

  8. Kang YQ, Ren W, Cao Q (2018) Large tunable negative lateral shift from graphene-based hyperbolic metamaterials backed by a dielectric. Superlattices & Microstructures 120:1–6

    Article  CAS  Google Scholar 

  9. Chen L, Liu X, Cao Z, Zhuang S (2011) Mechanism of giant Goos-Hänchen effect enhanced by long-range surface plasmon excitation. Journal of Optics 13:035002

    Article  CAS  Google Scholar 

  10. Leung PT, Chen CW, Chiang HP (2007) Large negative Goos–Hanchen shift at metal surfaces. Optics Communications 276(2):206–208

    Article  CAS  Google Scholar 

  11. Grzegorczyk TM, Chen X, Pacheco J, Chen J, Wu BI, Kong JA (2005) Reflection coefficients and goos-hanchen shifts in anisotropic and bianisotropic left-handed metamaterials. Prog Electromagn Res 51:83–113

    Article  Google Scholar 

  12. Yu WJ, Sun H, Gao L (2018) Enhanced normal-incidence Goos-Hänchen effects induced by magnetic surface plasmons in magneto-optical metamaterials. Optics Express 26(4):3956

    Article  CAS  Google Scholar 

  13. Farmani A, Miri M, Sheikhi MH (2017) Analytical modeling of highly tunable giant lateral shift in total reflection of light beams from a graphene containing structure. Opt Commun 391:68–76

    Article  CAS  Google Scholar 

  14. Farmani A, Mir M, Sharifpour Z (2018) Broadly tunable and bidirectional terahertz graphene plasmnic switch based on enhanced Goos-Hänchen effect. Appl Surf Sci 453:358–364

    Article  CAS  Google Scholar 

  15. Wang HF, Zhou ZX, Tian H, Liu DJ, Shen YQ (2010) Electric control of enhanced lateral shift owning to surface plasmon resonance in Kretschmann configuration with an electro-optic crystal. J Opt 12:045708

    Article  CAS  Google Scholar 

  16. Artmann K (1948) Berechnung der seitenversetzung does totalreflektierten strahles. Ann Phys 437:87–102

    Article  Google Scholar 

  17. Luo C, Guo J, Wang Q, Xiang Y (2013) Electrically controlled Goos-Hänchen shift of a light beam reflected from the metal-insulator-semiconductor structure. Opt Express 21(9):10430–10439

    Article  Google Scholar 

  18. Fu M, Zhang Y, Wu J, Dai X, Xiang Y (2013) Large and negative Goos-Hänchen shift with magneto-controllability based on a ferrofluid. J Opt 15(3):5103

    Article  CAS  Google Scholar 

  19. Kang YQ, Xiang Y, Luo C (2018) Tunable enhanced Goos–Hänchen shift of light beam reflected from graphene-based hyperbolic metamaterials. Applied Physics B 124(6):115

    Article  CAS  Google Scholar 

  20. Kang Y, Gao P, Liu H, Zhang J (2019) Large tunable lateral shift from guided wave surface plasmon resonance. Plasmonics 14(5):1289–1293

    Article  CAS  Google Scholar 

  21. Wang Y, Cao Z, Li H, Hao J, Yu T, Shen Q (2008) Electric control of spatial beam position based on the Goos–Hänchen effect. Appl Phys Lett 93:091103

    Article  CAS  Google Scholar 

  22. Kaliteevskii MA, Portnoi EL, Sokolovskii GS (1997) Phase effects in a semiconductor laser with diffraction extraction of radiation. Technical Physics Letters 23(9):699–700

    Article  Google Scholar 

  23. Morozov KM, Ivanov KA, Pereira DDS, Menelaou C, Kaliteevski MA (2019) Revising of the Purcell effect in periodic metal-dielectric structures: the role of absorption. Sci Rep 9(1):9604

    Article  CAS  Google Scholar 

  24. Merano M, Aiello A, Exter MPV, Woerdman JP (2009) Observing angular deviations in the specular reflection of a light beam. Nat Photonics 3(6):337–340

    Article  CAS  Google Scholar 

  25. Liu X, Yang Q, Qiao Z, Li T, Zhu P, Cao Z (2010) Physical origin of large positive and negative lateral optical beam shifts in prism–waveguide coupling system. Opt Commun 283(13):2681–2685

    Article  CAS  Google Scholar 

  26. Sato M, Sasada H (2013) Measurements of transverse lateral and longitudinal angular shifts of high-azimuthal-mode Laguerre-Gaussian beams reflected at a dielectric interface near critical incidence. J Opt 15(1):4018

    Article  Google Scholar 

  27. Sui G, Cheng L, Chen L (2011) Large positive and negative lateral optical beam shift due to long-range surface plasmon resonance. Opt Commun 284(6):1553–1556

    Article  CAS  Google Scholar 

  28. Li CF, Zhou H, Hou P, Chen X (2008) Giant bistable lateral shift owing to surface-plasmon excitation in Kretschmann configuration with a Kerr nonlinear dielectric. Opt Lett 33(11):1249–1251

    Article  Google Scholar 

  29. Yin X, Hesselink L (2004) Large positive and negative lateral optical beam displacements due to surface plasmon resonance. Appl Phys Lett 85(3):372–374

    Article  CAS  Google Scholar 

  30. Chen L, Cao Z, Ou F, Li H, Shen Q, Qiao H (2007) Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides. Opt Lett 32(11):1432–1434

    Article  Google Scholar 

  31. Lahav A, Auslender M, Abdulhalim I (2008) Sensitivity enhancement of guided-wave surface-plasmon resonance sensors. Opt Lett 33(21):2539–2541

    Article  CAS  Google Scholar 

  32. Cherifi A, Bouhafs B (2017) Sensitivity enhancement of a surface plasmon resonance sensor using porous metamaterial layers. Materials Research Express 4(12):125009

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by National Science Foundation for China (Grant No. 61605098, 11664004, 11874245), Launching Funds for Doctors of Shanxi Datong University (Grant No. 2014-B-04), Shanxi Provincial Natural Science Foundation (Grant No. 201801D121071, 201701D221096), Scientific and Technological Innovation Project of Colleges in Shanxi Province (Grant No. 2019L0741), and Foundation for Doctors of Hengyang Normal University (Grant No. 16D03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongqiang Kang or Jing Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Gao, P., Zhang, J. et al. Electrically Control Lateral Shift Owning to Guided-Wave Surface Plasmon Resonance with a Lithium Niobate Prism. Plasmonics 15, 1883–1890 (2020). https://doi.org/10.1007/s11468-020-01212-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01212-9

Keywords

Navigation