Skip to main content

Advertisement

Log in

Drought generates large, long-term changes in tree and liana regeneration in a monodominant Amazon forest

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The long-term dynamics of regeneration in tropical forests dominated by single tree species remains largely undocumented, yet is key to understanding the mechanisms by which one species can gain dominance and resist environmental change. We report here on the long-term regeneration dynamics in a monodominant stand of Brosimum rubescens Taub. (Moraceae) at the southern border of the Amazon forest. Here the climate has warmed and dried since the mid-1990′s. Twenty-one years of tree and liana regeneration were evaluated in four censuses in 30 plots by assessing species abundance, dominance, and diversity in all regeneration classes up to 5 cm diameter. The density of B. rubescens seedlings declined markedly, from 85% in 1997 to 29% in 2018 after the most intense El Niño-driven drought. While the fraction contributed by other tree species changed little, the relative density of liana seedlings increased from just 1 to 54% and three-quarters of liana species underwent a ten-fold or greater increase in abundance. The regeneration community experienced a high rate of species turnover, with changes in the overall richness and species diversity determined principally by lianas, not trees. Long-term maintenance of monodominance in this tropical forest is threatened by a sharp decline in the regeneration of the monodominant species and the increase in liana density, suggesting that monodominance will prove to be a transitory condition. The close association of these rapid changes with drying indicates that monodominant B. rubescens forests are impacted by drought-driven changes in regeneration, and therefore are particularly sensitive to climatic change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

    Article  Google Scholar 

  • Anderson MJ, Walsh DCI (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol Monogr 83:557–574. https://doi.org/10.1890/12-2010.1

    Article  Google Scholar 

  • Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693. https://doi.org/10.1111/j.1461-0248.2006.00926.x

    Article  PubMed  Google Scholar 

  • Aragão LEOC, Malhi Y, Roman- Cuesta RM, Saatchi S, Anderson LO, Shimabukuro YE (2007) Spatial patterns and fire response of recent Amazonian droughts. Geophys Res Lett 34(7):L07701. https://doi.org/10.1029/2006GL028946

    Article  Google Scholar 

  • Bjornstad ON (2018) ncf: Spatial Covariance Functions. Retrieved from CRAN.R-project.org/package=ncf. Accessed 11 Nov 2018

  • Boisier JP, Ciais P, Ducharne A, Guimberteau M (2015) Projected strengthening of Amazonian dry season by constrained climate model simulations. Nat Clim Change 5:656–660. https://doi.org/10.1038/nclimate2658

    Article  Google Scholar 

  • Bombled J (1976) Meio século de meteorologia. EdUFMT, Universidade Federal de Mato Grosso, Cuiabá

    Google Scholar 

  • Borcard D, Legendre P (2012) Is the Mantel Correlogram powerful enough to be useful in ecological analysis? A simulation study. Ecology 93(6):1473–1481. https://doi.org/10.1890/11-1737.1

    Article  PubMed  Google Scholar 

  • Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, Lopez-Gonzalez G, Monteagudo-Mendoza A, Malhi Y, Lewis SL, Vásquez Martinez R, Alexiades M, Álvarez Dávila E, Alvarez-Loayza P, Andrade A, Aragão LEOC, Araujo-Murakami A, Arets EJMM, Arroyo L, Aymard CGA, Bánki OS, Baraloto C, Barroso J, Bonal D, Boot RGA, Camargo JLC, Castilho CV, Chama V, Chao KJ, Chave J, Comiskey JA, Cornejo Valverde F, da Costa L, de Oliveira EA, Di Fiore A, Erwin TL, Fauset S, Forsthofer M, Galbraith DR, Grahame ES, Groot N, Hérault B, Higuchi N, Honorio Coronado EN, Keeling H, Killeen TJ, Laurance WF, Laurance S, Licona J, Magnussen WE, Marimon BS, Marimon-Junior BH, Mendoza C, Neill DA, Nogueira EM, Núñez P, Pallqui Camacho NC, Parada A, Pardo-Molina G, Peacock J, Peña-Claros M, Pickavance GC, Pitman NCA, Poorter L, Prieto A, Quesada CA, Ramírez F, Ramírez-Angulo H, Restrepo Z, Roopsind A, Rudas A, Salomão RP, Schwarz M, Silva N, Silva-Espejo JE, Silveira M, Stropp J, Talbot J, ter Steege H, Teran-Aguilar J, Terborgh J, Thomas-Caesar R, Toledo M, Torello-Raventos M, Umetsu RK, van der Heijden GMF, van der Hout P, Guimarães Vieira IC, Vieira SA, Vilanova E, Vos VA, Zagt RJ (2015) Long-term decline of the Amazon carbon sink. Nature 519:344–348. https://doi.org/10.1038/nature14283

    Article  CAS  PubMed  Google Scholar 

  • Caballé G, Martin A (2001) Thirteen years of change in trees and lianas in a Gabonese rainforest. Plant Ecol 152(2):167–173. https://doi.org/10.1023/A:1011497027749

    Article  Google Scholar 

  • Cai ZQ, Schnitzer SA, Bongers F (2009) Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Oecologia 161:25–33. https://doi.org/10.1007/s00442-009-1355-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Campanello PI, Manzané E, Villagra M, Zhang YJ, Panizza AM, di Francescantonio D, Rodrigues SA, Chen YJ, Santiago LS, Goldstein G (2016) Carbon allocation and water relations of lianas versus trees. In: Goldstein G, Santiago L (eds) Tropical tree physiology. Springer, New York, pp 103–124. https://doi.org/10.1007/978-3-319-27422-5_5

    Chapter  Google Scholar 

  • Comita LS, Aguilar S, Perez R, Lao S, Hubbell SP (2007) Patterns of woody plant species abundance and diversity in the seedling layer of a tropical forest. J Veg Sci 18:163–174. www.jstor.org/stable/4499212

  • Condit R, Hubbell SP, Lafrankie JV, Sukumar R, Manokaran N, Foster RB, Ashton PS (1996) Species-area and species-individual relationships for tropical trees: a comparison of three 50-ha plots. J Ecol 84:549–562. https://doi.org/10.2307/2261477

    Article  Google Scholar 

  • Connell JH (1978) Diversity in tropical rainforests and coral reefs. Science 199:1302–1310. https://doi.org/10.1126/science.199.4335.1302

    Article  CAS  Google Scholar 

  • Connell JH, Tracey JG, Webb LJ (1984) Compensatory recruitment, growth, and mortality as factors maintaining rain forest tree diversity. Ecol Monogr 54:141–164. https://doi.org/10.2307/1942659

    Article  Google Scholar 

  • Connell JH, Lowman MD (1989) Low-diversity tropical rain forests: some possible mechanisms for their existence. Am Nat 134:88–119. https://doi.org/10.1086/284967

    Article  Google Scholar 

  • Costa MH, Fleck LC, Cohn AS, Abrahão GM, Brando PM, Coe MT, Fu R, Lawrence D, Pires GF, Pousa R, Soares-Filho BS (2019) Climate risks to Amazon agriculture suggest a rationale to conserve local ecosystems. Front Ecol Environ 17(10):584–590. https://doi.org/10.1002/fee.2124

    Article  Google Scholar 

  • Costa ACL, Galbraith D, Almeida S, Portela BTT, Costa M, Silva-Junior JA, Braga AP, Gonçalves PHL, Oliveira ARR, Fisher R, Phillips OL, Metcalfe DB, Levy P, Meir P (2010) Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol 187:579–591. https://doi.org/10.1111/j.1469-8137.2010.03309.x

    Article  PubMed  Google Scholar 

  • De Walt SJ, Schnitzer SA, Chave J, Bongers F, Burnham RJ, Cai ZQ, Chuyong G, Clark DB, Ewango CEN, Gerwing JJ, Gortaire E, Hart T, Ibarra-Manríquez G, Ickes K, Kenfack D, Macía MJ, Makana JR, Martinez-Ramos M, Mascaro J, Moses S, Muller-Landau H, Parren MPE, Parthasarathy N, Pérez-Salicrup DR, Putz FE, Romero-Saltos H, Duncan T (2010) Annual rainfall and seasonality predict pan-tropical patterns of liana density and basal area. Biotropica 42:309–317. https://doi.org/10.1111/j.1744-7429.2009.00589.x

    Article  Google Scholar 

  • Elias F, Marimon BS, Marimon-Junior BH, Budke JC, Esquivel-Muelbert A, Morandi PS, Reis SM, Phillips OL (2018) Idiosyncratic soil-tree species associations and their relationships with drought in a monodominant Amazon forest. Acta Oecol 91:127–136. https://doi.org/10.1016/j.actao.2018.07.004

    Article  Google Scholar 

  • Esquivel-Muelbert A, Baker TR, Dexter KG, Lewis SL, Brienen RJW, Feldpausch TR, Lloyd J, Monteagudo-Mendoza A, Arroyo L, Álvarez-Dávilla E, Higuchi N, Marimon BS, Marimon-Junior BH, Silveira M, Vilanova E, Gloor E, Malhi Y, Chave J, Barlow J, Bonal D, Cardozo ND, Erwin T, Fauset S, Hérault B, Laurance S, Porter L, Qie L, Stahl C, Sullivan MJP, ter Steege H, Vos VA, Zuidema PA, Almeida E, Oliveira EA, Andrade A, Aragão L, Araújo-Murakami A, Arets E, Aymard GA, Baraloto C, Camargo PB, Barroso JG, Bongers F, Boot R, Camargo JL, Castro W, Moscoso VC, Comiskey J, Valverde FC, Costa ACL, Pasquel TA, Di Fiore A, Duque LF, Elias F, Engel J, Llampazo GF, Galbraith D, Fernández RH, Coronado EH, Hubau W, Jimenez-Rojas E, Lima AJN, Umetsu RK, Laurance W, Lopez-Gonzalez G, Lovejoy T, Cruz OAM, Morandi PS, Neill D, Vargas PN, Camacho NCP, Gutierrez AP, Pardo G, Peacock J, Peña-Claros M, Peñuela-Mora MC, Petronelli P, Pickavance GC, Pitman N, Prieto A, Quesada C, Ramírez-Angulo H, Réjou-Méchain M, Correa ZR, Roopsind A, Rudas A, Salomão R, Silva N, Silva-Espejo J, Singh J, Stropp J, Terborgh J, Thomas R, Toledo M, Torres-Lezama A, Gamarra LV, van der Meerd PJ, van der Heijden G, van der Hout P, Martinez RV, Vela C, Vieira ICG, Phillips OL (2019) Compositional response of Amazon forests to climate change. Glob Change Biol 25:39–56. https://doi.org/10.1111/gcb.14413

    Article  Google Scholar 

  • Fauset S, Baker TR, Lewis SL, Feldpausch TR, Affum-Baffoe K, Foli EG, Hamer KC, Swaine MD (2012) Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol Lett 15(10):1120–1129. https://doi.org/10.1111/j.1461-0248.2012.01834.x

    Article  PubMed  Google Scholar 

  • Feldpausch TR, Phillips OL, Brienen RJW, Gloor E, Lloyd J, Lopez-Gonzalez G, Monteagudo-Mendoza A, Malhi Y, Alarcón A, Álvarez Dávila E, Alvarez-Loayza P, Andrade A, Aragão LEOC, Arroyo L, Aymard CGA, Baker TR, Baraloto C, Barroso J, Bonal D, Castro W, Chama V, Chave J, Domingues TF, Fauset S, Groot N, Honorio Coronado E, Laurance S, Laurance WF, Lewis SL, Licona JC, Marimon BS, Marimon-Junior BH, Bautista CM, Neill DA, Oliveira EA, Santos CO, Camacho NCP, Pardo-Molina G, Prieto A, Quesada CA, Ramírez F, Ramírez-Angulo H, Réjou-Méchain M, Rudas A, Saiz G, Salomão RP, Silva-Espejo JE, Silveira M, ter Steege H, Stropp J, Terborgh J, Thomas-Caesar R, van der Heijden GMF, Vásquez-Martinez R, Vilanova E, Vos VA (2016) Amazon forest response to repeated droughts. Glob Biogeochem Cycles 30:964–982. https://doi.org/10.1002/2015GB005133

    Article  CAS  Google Scholar 

  • Felfili JM (1997) Dynamics of the natural regeneration in the Gama gallery forest in central Brazil. For Ecol Manag 91:235–245. https://doi.org/10.1016/S0378-1127(96)03862-5

    Article  Google Scholar 

  • Gentry AH (1988) Tree species richness of upper Amazonian forests. Proc Natl Acad Sci 85:156–159. https://doi.org/10.1073/pnas.85.1.156

    Article  CAS  PubMed  Google Scholar 

  • Gentry AH (1991) The distribution and evolution of climbing plants. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 3–53. https://doi.org/10.1017/CBO9780511897658.003

    Chapter  Google Scholar 

  • Gloor MRJW, Brienen RJ, Galbraith D, Feldpausch TR, Schöngart J, Guyot JL, Espinoza JC, Lloyd J, Phillips OL (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 40(9):1729–1733. https://doi.org/10.1002/grl.50377

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  • Hart TB (1990) Monospecific dominance in tropical rain forests. Trends Ecol Evol 5:6–11. https://doi.org/10.1016/0169-5347(90)90005-X

    Article  CAS  PubMed  Google Scholar 

  • Hart TB (1995) Seed, seedling and sub-canopy survival in monodominant and mixed forests of the Ituri Forest, Africa. J Trop Ecol 11:443–459. https://doi.org/10.1017/S0266467400008919

    Article  Google Scholar 

  • Hart PJ (2012) Patterns of tree mortality in a monodominant tropical forest. In: Sudarshana P, Nageswara-Rao M, Soneji JR (eds) Tropical forests. InTech, Shanghai, pp 349–358. https://doi.org/10.5772/29762

    Chapter  Google Scholar 

  • Henkel TW, Mayor JR (2019) Implications of a long-term mast seeding cycle for climatic entrainment, seedling establishment and persistent monodominance in a Neotropical, ectomycorrhizal canopy tree. Ecol Res 34(4):472–484. https://doi.org/10.1111/1440-1703.12014

    Article  Google Scholar 

  • Hirzel AH, Lay GL (2008) Habitat suitability modelling and niche theory. J Appl Ecol 45:1372–1381. https://doi.org/10.1111/j.1365-2664.2008.01524.x

    Article  Google Scholar 

  • Ibanez T, Birnbaum P (2014) Monodominance at the rainforest edge: case study of Codia mackeeana (Cunoniaceae) in New Caledonia. Aust J Bot 62:312–321. https://doi.org/10.1071/BT14062

    Article  Google Scholar 

  • INMET – Instituto Nacional de Meteorologia (2019) Historical meteorological data. https://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep. Accessed 2 Jan 2019

  • Jiménez-Muñoz JC, Mattar C, Barichivich J, Santamaría-Artigas A, Takahashi K, Malhi Y, Sobrino JA, van der Schrier G (2016) Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci Rep-UK 6:33130. https://doi.org/10.1038/srep33130

    Article  CAS  Google Scholar 

  • Kindt R, Coe R (2005) Tree diversity analysis: A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi. https://www.worldagroforestry.org/downloads/Publications/PDFS/b13695.pdf

  • Ladwig LM, Meiners SJ (2010) Spatiotemporal dynamics of lianas during 50 years of succession to temperate forest. Ecology 91:671–680. https://doi.org/10.1890/08-1738.1

    Article  PubMed  Google Scholar 

  • Magnago LFS, Magrach A, Barlow J, Schaefer CEGR, Laurance WF, Martins SV, Edwards DP (2017) Do fragment size and edge effects predict carbon stocks in trees and lianas in tropical forests? Funct Ecol 31:542–552. https://doi.org/10.1111/1365-2435.12752

    Article  Google Scholar 

  • Malhi Y, Aragão LEOC, Galbraith D, Huntingford C, Fisher R, Zelazowski P, Sitch S, McSweeney C, Meir P (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. PNAS 106(49):20610–20615. https://doi.org/10.1073/pnas.0804619106

    Article  PubMed  Google Scholar 

  • Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:L12703. https://doi.org/10.1029/2011gl047436

    Article  Google Scholar 

  • Marimon BS (2005) Dinâmica de uma floresta monodominante de Brosimum rubescens Taub. e comparação com uma floresta mista em Nova Xavantina-MT. Ph.D. Thesis, Universidade de Brasília, Brasília

  • Marimon BS, Felfili JM (2006) Chuva de sementes em uma floresta monodominante de Brosimum rubescens Taub. e em uma floresta mista adjacente no Vale do Araguaia, MT, Brasil. Acta Bot Bras 20:423–432. https://doi.org/10.1590/S0102-33062006000200017

    Article  Google Scholar 

  • Marimon BS, Felfili JM, Haridasan M (2001a) Studies in monodominant forests in eastern Mato Grosso, Brazil: I. A forest of Brosimum rubescens Taub. Edinb J Bot 58:123–137. https://doi.org/10.1017/S096042860100049X

    Article  Google Scholar 

  • Marimon BS, Felfili JM, Haridasan M (2001b) Studies in monodominant forests in eastern Mato Grosso, Brazil: II. A forest in the Areões Xavante Indian Reserve. Edinb J Bot 58:483–497. https://doi.org/10.1017/S0960428601000798

    Article  Google Scholar 

  • Marimon BS, Felfili JM, Marimon-Junior BH, Franco AC, Fagg CW (2008) Desenvolvimento inicial e partição de biomassa de Brosimum rubescens Taub. (Moraceae) sob diferentes níveis de sombreamento. Acta Bot Bras 22:941–953. https://doi.org/10.1590/S0102-33062008000400005

    Article  Google Scholar 

  • Marimon BS, Felfili JM, Fagg CW, Marimon-Junior BH, Umetsu RK, Oliveira-Santos C, Morandi P, Lima HS, Nascimento ART (2012) Monodominance in a Brosimum rubescens Taub. forest: structure and dynamics of natural regeneration. Acta Oecol 43:134–139. https://doi.org/10.1016/j.actao.2012.07.001

    Article  Google Scholar 

  • Marimon BS, Marimon-Junior BH, Feldpausch TR, Oliveira-Santos C, Mews HA, Lopez-Gonzalez G, Franczak DD, Oliveira EA, Maracahipes L, Miguel A, Lenza E, Phillips OL (2014) Disequilibrium and hyperdynamic tree turnover at the forest-cerrado transition zone in southern Amazonia. Plant Ecol Divers 7:281–292. https://doi.org/10.1080/17550874.2013.818072

    Article  Google Scholar 

  • Meir P, Wood TE, Galbraith DR, Brando PM, Costa ACL, Rowland L, Ferreira LV (2015) Threshold responses to soil moisture deficit by trees and soil in tropical rain forests: insights from field experiments. Bioscience 65(9):882–892. https://doi.org/10.1093/biosci/biv107

    Article  PubMed  PubMed Central  Google Scholar 

  • Nascimento MT, Proctor J (1997) Population dynamics of five tree species in a monodominant Peltogyne forest and two other forest types on Maracá Island, Roraima, Brazil. For Ecol Manag 94:115–128. https://doi.org/10.1016/S0378-1127(96)03968-0

    Article  Google Scholar 

  • Nascimento MT, Carvalho LCS, Barbosa RI, Villela DM (2014) Variation in floristic composition, demography and above-ground biomass over a 20-year period in an Amazonian monodominant forest. Plant Ecol Divers 7(1–2):293–303. https://doi.org/10.1080/17550874.2013.772673

    Article  Google Scholar 

  • Nascimento MT, Barbosa MI, Dexter KG, Castilho CV, Carvalho LCS, Villela DM (2017) Is the Peltogyne gracilipes monodominant forest characterised by distinct soils? Acta Oecol 85:104–107. https://doi.org/10.1016/j.actao.2017.10.001

    Article  Google Scholar 

  • Nascimento MT, Barbosa RI, Villela DM, Proctor J (2007) Above-ground biomass changes over an 11-year period in Amazon monodominant forest and two other lowland forests. Plant Ecol 192:181–192. https://doi.org/10.1007/s11258-007-9303-z

    Article  Google Scholar 

  • Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88(9):2259–2269. https://doi.org/10.1890/06-1046.1

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) vegan: Community Ecology Package. v.2.5-3. https://cran.r-project.org, https://github.com/vegandevs/vegan. Accessed 25 Nov 2018

  • Oliveira EA, Marimon BS, Feldspauch T, Colli GR, Marimon-Junior BH, Lloyd J, Lenza E, Maracahipes L, Santos CO, Phillips OL (2014) Diversity, abundance and distribution of lianas of the Cerrado-Amazonian forest transition, Brazil. Plant Ecol Divers 7:231–240. https://doi.org/10.1080/17550874.2013.816799

    Article  Google Scholar 

  • Peh KSH, Bonaventure S, Lloyd J, Quesada CA, Lewis SL (2011a) Soil does not explain monodominance in a Central African tropical forest. PLoS ONE 6(2):e16996. https://doi.org/10.1371/journal.pone.0016996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peh KSH, Lewis SL, Lloyd J (2011b) Mechanisms of monodominance in diverse tropical tree-dominated systems. J Ecol 99:891–898. https://doi.org/10.1111/j.1365-2745.2011.01827.x

    Article  Google Scholar 

  • Peh KSH, Sonké B, Séné O, Djuikouo M-NK, Nguembou CK, Taedoumg H, Begne SK, Lewis SL (2014) Mixed-forest species establishment in a monodominant forest in Central Africa: implications for tropical forest invasibility. PLoS ONE 9(5):e97585. https://doi.org/10.1371/journal.pone.0097585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Ramos IM, Ourcival JM, Limousin JM, Rambal S (2010) Mast fruiting under increasing drought: results from a long-term data set and from a rainfall exclusion experiment. Ecology 91(10):3057–3068. https://doi.org/10.1890/09-2313.1

    Article  PubMed  Google Scholar 

  • Pérez-Salicrup DR, Sork VL, Putz FE (2001) Lianas and trees in a liana forest of Amazonian Bolivia. Biotropica 33:34–47. https://doi.org/10.1111/j.1744-7429.2001.tb00155.x

    Article  Google Scholar 

  • Phillips OL, Martinez RV, Mendoza AM, Baker TR, Vargas PN (2005) Large lianas as hyperdynamic elements of the tropical forest canopy. Ecology 86:1250–1258. https://doi.org/10.1890/04-1446

    Article  Google Scholar 

  • Phillips OL, Martínez RV, Arroyo L, Baker TR, Killeen T, Lewis SL, Malhi Y, Mendoza AM, Neill D, Vargas PN, Alexiades M, Cerón C, Fiore A, Erwin T, Jardim A, Palacios W, Saldias M, Vinceti B (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774. https://doi.org/10.1038/nature00926

    Article  CAS  PubMed  Google Scholar 

  • Phillips OL, Baker TR, Arroyo L, Higuchi N, Killeen T, Laurance WF, Lewis SL, Lloyd J, Malhi Y, Monteagudo A, Neill D, Núñez Vargas P, Silva N, Terborgh J, Vásquez Martínez R, Alexiades M, Almeida S, Brown S, Chave J, Comiskey JA, Czimczik CI, Di Fiore A, Erwin T, Kuebler C, Laurance SG, Nascimento HEM, Olivier J, Palacios W, Patiño S, Pitman N, Quesada CA, Saldias M, Torres Lezama A, Vinceti B (2004) Pattern and process in Amazon forest dynamics, 1976–2001. Philos Trans R Soc B 359:381–407. https://doi.org/10.1098/rstb.2003.1438

    Article  CAS  Google Scholar 

  • Phillips OL, Aragão L, Lewis SL, Fisher JB, Lloyd J, Lopez-Gonzalez G, Malhi Y, Monteagudo A, Peacock J, Quesada CA, van der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, Baker TR, Banki O, Blanc L, Bonal D, Brando P, Chave J, de Oliveira ACA, Cardozo ND, Czimczik CI, Feldpausch TR, Freitas MA, Gloor E, Higuchi N, Jimenez E, Lloyd G, Meir P, Mendoza C, Morel A, Neill DA, Nepstad D, Patino S, Penuela MC, Prieto A, Ramirez F, Schwarz M, Silva J, Silveira M, Thomas AS, ter Steege H, Stropp J, Vasquez R, Zelazowski P, Davila EA, Andelman S, Andrade A, Chao KJ, Erwin T, Di Fiore A, Honorio E, Keeling H, Killeen TJ, Laurance WF, Cruz AP, Pitman NCA, Vargas PN, Ramirez-Angulo H, Rudas A, Salamão R, Silva N, Terborgh J, Torres-Lezama A (2009) Drought sensitivity of the Amazon rainforest. Science 323:1344–1347. https://doi.org/10.1126/science.1164033

    Article  CAS  PubMed  Google Scholar 

  • Putz FE (1980) Lianas vs trees. Biotropica 12:224–225. https://doi.org/10.2307/2387978

    Article  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Found. Stat. Comput. https://www.r-project.org/. Accessed 20 May 2020

  • Read J, McCoy S, Jaffré T, Sanson G, Logan M (2017) Growth and biomass allocation in seedlings of rain-forest trees in New Caledonia: monodominants vs. subordinates and episodic vs. continuous regenerators. J Trop Ecol 33(2):128–142. https://doi.org/10.1017/S0266467416000638

    Article  Google Scholar 

  • Restom TG, Nepstad DC (2004) Seedling growth dynamics of a deeply rooting liana in a secondary forest in eastern Amazonia. For Ecol Manag 190:109–118. https://doi.org/10.1016/j.foreco.2003.10.010

    Article  Google Scholar 

  • Rifai SW, Girardin CAJ, Berenguer E, Del Aguila-Pasquel J, Dahlsjö CAL, Doughty CE, Jeffery KJ, Moore S, Oliveras I, Riutta T, Rowland LM, Murakami AA, Addo-Danso SD, Brando P, Burton C, Ondo FE, Duah-Gyamfi A, Amézquita FF, Freitag R, Pacha FH, Huasco WH, Ibrahim F, Mbou AT, Mihindou VM, Peixoto KS, Rocha W, Rossi LC, Seixas M, Silva-Espejo JE, Abernethy KA, Adu-Bredu S, Barlow J, da Costa ACL, Marimon BS, Marimon-Junior BH, Meir P, Metcalfe DB, Phillips OL, White LJT, Malhi Y (2018) ENSO drives interannual variation of forest woody growth across the tropics. Philos Trans R Soc Lond B Biol Sci 373:20170410. https://doi.org/10.1098/rstb.2017.0410

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnitzer SA (2005) A mechanistic explanation for global patterns of liana abundance and distribution. Am Nat 166:262–276. https://doi.org/10.1086/431250

    Article  PubMed  Google Scholar 

  • Schnitzer SA, Bongers F (2011) Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecol Lett 14:397–406. https://doi.org/10.1111/j.1461-0248.2011.01590.x

    Article  PubMed  Google Scholar 

  • Schnitzer SA, Dalling JW, Carson WP (2000) The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. J Ecol 88:655–666. https://doi.org/10.1046/j.1365-2745.2000.00489.x

    Article  Google Scholar 

  • Silva MP (2015) Ritmos e ciclos no clima local de Cuiabá/Várzea Grande-MT: uma análise secular (1912–2012). Master Thesis, Universidade Federal de Mato Grosso, Cuiabá

  • ter Steege H, Pitman N, Sabatier D, Castellanos H, van Der Hout P, Daly DC, Silveira M, Phillips O, Vasquez R, van Andel T, Duivenvoorden J (2003) A spatial model of tree α-diversity and tree density for the Amazon. Biodivers Conserv 12(11):2255–2277. https://doi.org/10.1023/A:1024593414624

    Article  Google Scholar 

  • Toledo M, Poorter L, Peña-Claros M, Alarcón A, Balcázar J, Leaño C, Licona JC, Bongers F (2011) Climate and soil drive forest structure in Bolivian lowland forests. J Trop Ecol 27:333–345. https://doi.org/10.1017/S0266467411000034

    Article  Google Scholar 

  • Torti SD, Coley PD, Kursar TA (2001) Causes and consequences of monodominance in tropical lowland forests. Am Nat 157:141–153. https://doi.org/10.1086/318629

    Article  CAS  PubMed  Google Scholar 

  • Tovar C, Harris DJ, Breman E, Brncic T, Willis KJ (2019) Tropical monodominant forest resilience to climate change in Central Africa: a Gilbertiodendron dewevrei forest pollen record over the past 2,700 years. J Veg Sci 30(3):575–586. https://doi.org/10.1111/jvs.12746

    Article  Google Scholar 

  • Valverde-Berrantes OJ, Rocha O (2014) Logging impacts on forest structure and seedling dynamics in a Prioria copaifera (Fabaceae) dominated tropical rain forest (Talamanca, Costa Rica). Rev Biol Trop 62(1):347–357

    Article  Google Scholar 

  • van der Heijden G, Phillips OL (2009) Liana infestation impacts tree growth in a lowland tropical moist forest. Biogeosciences 6:2217–2226. https://doi.org/10.5194/bg-6-2217-2009

    Article  Google Scholar 

  • van der Heijden GM, Schnitzer SA, Powers JS, Phillips OL (2013) Liana impacts on carbon cycling, storage and sequestration in tropical forests. Biotropica 45(6):682–692. https://doi.org/10.1111/btp.12060

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001. We also thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico/Projetos Ecológicos de Longa Duração—CNPq/PELD (Nr. 401279/2014-6 and 441244/2016-5), and Fundação de Amparo à Pesquisa do Estado de Mato Grosso, Project RedeFlor 0589267/2016, for financial support. B.S. Marimon and B.H. Marimon-Junior acknowledge CNPq for their productivity grants (305029/2015-0 and 301153/2018-3), and P.S. Morandi acknowledges CAPES for his post-doc grant (88887.185186/2018-00). O.L. Phillips was supported by an ERC Advanced Grant (Tropical Forests in the Changing Earth System) and a Royal Society Wolfson Research Merit Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz S. Marimon.

Additional information

Communicated by Thomas A. Nagel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4927 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marimon, B.S., Oliveira-Santos, C., Marimon-Junior, B.H. et al. Drought generates large, long-term changes in tree and liana regeneration in a monodominant Amazon forest. Plant Ecol 221, 733–747 (2020). https://doi.org/10.1007/s11258-020-01047-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-020-01047-8

Keywords

Navigation